This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A266236 #40 Mar 28 2016 08:05:25 %S A266236 1,7,91,37,4291,16003,1801,17,263683,19927,1003003,1775557,111169, %T A266236 506115,17145,423001,16789507,24152311,1261657,3266062,64024003,5080, %U A266236 113411851,148072393,7082497,244187503,1922636,14355469,3132736,594896491,27009001,8341522,1073840131 %N A266236 Least m > 0 such that m*n^3 + 1 is a cube. %C A266236 Least m>0 for which x^3 - m*y^3 = 1 has a solution with y = n. %H A266236 Robert G. Wilson v, <a href="/A266236/b266236.txt">Table of n, a(n) for n = 0..1000</a> %F A266236 a(n) = A076947(n^3). - _Robert Israel_, Dec 25 2015 %e A266236 17*7^3+1 = 18^3, and 17 is the smallest positive m such that m*7^3+1 is a cube, so a(7)=17. %t A266236 f[n_] := Block[{x = 2, n3 = n^3}, While[ Mod[x^3 - 1, n3] != 0, x++]; (x^3 - 1)/n3]; f[0] = 1; Array[f, 34, 0] (* _Robert G. Wilson v_, Mar 24 2016 *) %o A266236 (PARI) a(n) = {my(m = 1, cn = n^3); while (!ispower(m*cn + 1, 3), m++); m;} \\ _Michel Marcus_, Feb 09 2016 %Y A266236 Cf. A000578, A035096, A067872. %K A266236 nonn %O A266236 0,2 %A A266236 _Alex Ratushnyak_, Dec 25 2015