cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A266247 Binary representation of the middle column of the "Rule 9" elementary cellular automaton starting with a single ON (black) cell.

Original entry on oeis.org

1, 10, 101, 1010, 10101, 101011, 1010110, 10101101, 101011010, 1010110101, 10101101010, 101011010101, 1010110101010, 10101101010101, 101011010101010, 1010110101010101, 10101101010101010, 101011010101010101, 1010110101010101010, 10101101010101010101
Offset: 0

Views

Author

Robert Price, Dec 25 2015

Keywords

References

  • Stephen Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.

Crossrefs

Programs

  • Mathematica
    rule=9; rows=20; ca=CellularAutomaton[rule,{{1},0},rows-1,{All,All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]],{rows-k+1,rows+k-1}],{k,1,rows}]; (* Truncated list of each row *) mc=Table[catri[[k]][[k]],{k,1,rows}]; (* Keep only middle cell from each row *) Table[FromDigits[Take[mc,k]],{k,1,rows}]  (* Binary Representation of Middle Column *)
  • Python
    print([(100000*10**n//9 + 100001*10**n)//110000 for n in range(50)]) # Karl V. Keller, Jr., Dec 15 2021

Formula

From Colin Barker, Dec 28 2015 and Apr 14 2019: (Start)
a(n) = (-45000*(-1)^n + 1000009*10^n - 55000)/990000 for n > 3.
a(n) = 10*a(n-1) + a(n-2) - 10*a(n-3) for n > 6.
G.f.: (1 + x^5 - x^6) / ((1-x)*(1+x)*(1-10*x)).
(End)
a(n) = floor((100000*10^n/9 + 100001*10^n)/110000). - Karl V. Keller, Jr., Dec 15 2021