A266254 Binary representation of the n-th iteration of the "Rule 11" elementary cellular automaton starting with a single ON (black) cell.
1, 100, 11, 1111100, 11, 11111111100, 11, 111111111111100, 11, 1111111111111111100, 11, 11111111111111111111100, 11, 111111111111111111111111100, 11, 1111111111111111111111111111100, 11, 11111111111111111111111111111111100, 11
Offset: 0
Links
- Robert Price, Table of n, a(n) for n = 0..999
- Eric Weisstein's World of Mathematics, Elementary Cellular Automaton
- Stephen Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
- Index entries for sequences related to cellular automata
- Index to Elementary Cellular Automata
- Index entries for linear recurrences with constant coefficients, signature (0,10001,0,-10000).
Programs
-
Mathematica
rule=11; rows=20; ca=CellularAutomaton[rule,{{1},0},rows-1,{All,All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]],{rows-k+1,rows+k-1}],{k,1,rows}]; (* Truncated list of each row *) Table[FromDigits[catri[[k]]],{k,1,rows}] (* Binary Representation of Rows *)
-
Python
print([(10*100**n - 100)//9 if n%2 else 11 - 10*0**n for n in range(50)]) # Karl V. Keller, Jr., Aug 26 2021
Formula
From Colin Barker, Dec 26 2015 and Apr 14 2019: (Start)
a(n) = (199*(-1)^n+10^(2*n+1)-(-1)^n*10^(2*n+1)-1)/18 for n>0.
a(n) = 10001*a(n-2) - 10000*a(n-4) for n>4.
G.f.: (1+100*x-9990*x^2+111000*x^3-100000*x^4) / ((1-x)*(1+x)*(1-100*x)*(1+100*x)).
(End)
a(n) = (10*100^n - 100)/9 for odd n; a(n) = 11 - 10*0^n for even n. - Karl V. Keller, Jr., Aug 26 2021
Comments