cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A266256 Number of ON (black) cells in the n-th iteration of the "Rule 11" elementary cellular automaton starting with a single ON (black) cell.

Original entry on oeis.org

1, 1, 2, 5, 2, 9, 2, 13, 2, 17, 2, 21, 2, 25, 2, 29, 2, 33, 2, 37, 2, 41, 2, 45, 2, 49, 2, 53, 2, 57, 2, 61, 2, 65, 2, 69, 2, 73, 2, 77, 2, 81, 2, 85, 2, 89, 2, 93, 2, 97, 2, 101, 2, 105, 2, 109, 2, 113, 2, 117, 2, 121, 2, 125, 2, 129, 2, 133, 2, 137, 2, 141
Offset: 0

Views

Author

Robert Price, Dec 25 2015

Keywords

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.

Crossrefs

Cf. A266253.

Programs

  • Mathematica
    rule=11; rows=20; ca=CellularAutomaton[rule,{{1},0},rows-1,{All,All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]],{rows-k+1,rows+k-1}],{k,1,rows}]; (* Truncated list of each row *) Table[Total[catri[[k]]],{k,1,rows}] (* Number of Black cells in stage n *)

Formula

Conjectures from Colin Barker, Dec 27 2015 and Apr 14 2019: (Start)
a(n) = (-2*((-1)^n-1)*n+3*(-1)^n+1)/2 for n>0.
a(n) = 2*a(n-2)-a(n-4) for n>4.
G.f.: (1+x+3*x^3-x^4) / ((1-x)^2*(1+x)^2).
(End)

Extensions

Conjectures from Colin Barker, Apr 14 2019