This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A266262 #13 May 30 2016 00:28:20 %S A266262 0,1,2,7,5,2,9,8,4,4,7,9,9,6,6,6,5,6,1,1,3,5,2,2,5,2,5,4,8,8,7,2,5,7, %T A266262 9,8,1,5,6,2,3,8,9,3,7,0,4,9,8,7,4,2,9,2,7,9,3,2,4,6,3,6,6,6,6,1,1,4, %U A266262 0,7,0,2,3,2,0,6,2,1,2,4,7,4,0,9,0,4,8,1,9,3,5,4,2 %N A266262 Decimal expansion of zeta'(-11) (the derivative of Riemann's zeta function at -11) (negated). %H A266262 G. C. Greubel, <a href="/A266262/b266262.txt">Table of n, a(n) for n = 0..1500</a> %F A266262 zeta'(-n) = HarmonicNumber(n)*BernoulliB(n+1)/(n+1) - log(A(n)), where A(n) is the n-th Bendersky constant. %F A266262 zeta'(-11) = - 57844301/908107200 - log(A(11)). %e A266262 -0.012752984479966656113522525488725798156238937049874292793246366661... %t A266262 Join[{0}, RealDigits[Zeta'[-11], 10, 100] // First] %Y A266262 Cf. A075700 (zeta'(0)), A084448 (zeta'(-1)), A240966 (zeta'(-2)), A259068 (zeta'(-3)), A259070 (zeta'(-5)), A259071 (zeta'(-6)), A259072 (zeta'(-7)), A259073 (zeta'(-8)), A266260 (zeta'(-9)), A266261 (zeta'(-10)), A266263 (zeta'(-12)), A260660 (zeta'(-13)), A266264 (zeta'(-14)), A266270 (zeta'(-15)), A266271 (zeta'(-16)), A266272 (zeta'(-17)), A266273 (zeta'(-18)), A266274 (zeta'(-19)), A266275 (zeta'(-20)). %K A266262 nonn,cons %O A266262 0,3 %A A266262 _G. C. Greubel_, Dec 25 2015 %E A266262 Keyword cons added by _Rick L. Shepherd_, May 29 2016