cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A266263 Decimal expansion of zeta'(-12) (the derivative of Riemann's zeta function at -12).

This page as a plain text file.
%I A266263 #8 Dec 27 2015 09:21:00
%S A266263 0,6,3,2,7,0,5,8,3,3,4,1,4,6,3,0,0,0,5,9,5,1,8,2,3,0,1,2,3,4,3,0,7,7,
%T A266263 6,7,5,1,1,4,1,8,1,8,4,7,5,3,2,3,6,3,7,6,6,7,9,5,6,5,9,4,5,6,7,0,6,2,
%U A266263 1,5,2,5,4,6,0,6,7,4,9,7,6,7,3,7,4,7,1,0,3,4,3,7,1
%N A266263 Decimal expansion of zeta'(-12) (the derivative of Riemann's zeta function at -12).
%H A266263 G. C. Greubel, <a href="/A266263/b266263.txt">Table of n, a(n) for n = 0..1500</a>
%F A266263 zeta'(-12) = (-467775*Zeta(13))/(8*Pi^12) = - log(A(12)).
%F A266263 Equals (691/10920)*(zeta(13)/zeta(12)).
%e A266263 0.06327058334146300059518230123430776751141818475323637667956594567...
%t A266263 Join[{0}, RealDigits[(691/10920)*(Zeta[13]/Zeta[12]), 10, 100] // First]
%Y A266263 Cf. A075700 (zeta'(0)), A084448 (zeta'(-1)), A240966 (zeta'(-2)), A259068 (zeta'(-3)), A259069 (zeta'(-4)), A259070 (zeta'(-5)), A259071 (zeta'(-6)), A259072 (zeta'(-7)), A259073 (zeta'(-8)), A266260 (zeta'(-9)), A266261 (zeta'(-10)), A266262 (zeta'(-11)), A260660 (zeta'(-13)), A266264 (zeta'(-14)), A266270 (zeta'(-15)), A266271 (zeta'(-16)), A266272 (zeta'(-17)), A266273 (zeta'(-18)), A266274 (zeta'(-19)), A266275 (zeta'(-20)).
%K A266263 nonn,cons
%O A266263 0,2
%A A266263 _G. C. Greubel_, Dec 25 2015