cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A266264 Decimal expansion of zeta'(-14) (the derivative of Riemann's zeta function at -14).

This page as a plain text file.
%I A266264 #8 Dec 27 2015 09:21:06
%S A266264 2,9,1,6,5,7,7,2,4,7,4,3,8,7,3,5,2,0,3,2,1,2,2,4,0,0,3,0,7,0,2,5,0,6,
%T A266264 6,6,9,7,0,2,6,3,0,3,8,5,3,3,0,9,0,8,3,2,1,4,9,9,0,9,3,5,9,6,5,6,5,1,
%U A266264 5,1,8,7,0,2,8,4,6,3,7,5,8,6,7,7,5,0,9,3,9,2,4,0,9,7,2
%N A266264 Decimal expansion of zeta'(-14) (the derivative of Riemann's zeta function at -14).
%H A266264 G. C. Greubel, <a href="/A266264/b266264.txt">Table of n, a(n) for n = 0..1500</a>
%F A266264 zeta'(-14) = - (42567525*zeta(15))/(16*Pi^14) = - log(A(14)).
%F A266264 Equals -(7/24)*(zeta(15)/zeta(14)).
%e A266264 -0.29165772474387352032122400307025066697026303853309083214990....
%t A266264 RealDigits[N[Zeta'[-14], 100]]
%Y A266264 Cf. A075700 (zeta'(0)), A084448 (zeta'(-1)), A240966 (zeta'(-2)), A259068 (zeta'(-3)), A259069 (zeta'(-4)), A259070 (zeta'(-5)), A259071 (zeta'(-6)), A259072 (zeta'(-7)), A259073 (zeta'(-8)), A266260 (zeta'(-9)), A266261 (zeta'(-10)), A266262 (zeta'(-11)), A266263 (zeta'(-12)), A260660 (zeta'(-13)), A266270 (zeta'(-15)), A266271 (zeta'(-16)), A266272 (zeta'(-17)), A266273 (zeta'(-18)), A266274 (zeta'(-19)), A266275 (zeta'(-20)).
%K A266264 nonn,cons
%O A266264 0,1
%A A266264 _G. C. Greubel_, Dec 25 2015