cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A266270 Decimal expansion of zeta'(-15) (the derivative of Riemann's zeta function at -15).

This page as a plain text file.
%I A266270 #7 Dec 27 2015 09:21:14
%S A266270 4,0,0,3,1,9,3,0,2,8,0,7,7,2,5,5,9,3,8,4,3,5,8,0,3,1,7,5,2,0,3,2,0,3,
%T A266270 6,7,2,0,1,2,6,1,2,8,6,2,6,6,2,3,2,9,4,4,2,8,4,1,0,6,9,4,2,6,3,9,0,3,
%U A266270 0,3,3,6,0,2,9,3,1,7,2,0,0,7,6,4,2,6,1,4,6,4,2,2,2,6,4,3,9,5,4,8,4,5,7,8,4,3,1,4,3,1,3,8,3,2
%N A266270 Decimal expansion of zeta'(-15) (the derivative of Riemann's zeta function at -15).
%H A266270 G. C. Greubel, <a href="/A266270/b266270.txt">Table of n, a(n) for n = 0..1500</a>
%F A266270 zeta'(-n) = (BernoulliB(n+1)*HarmonicNumber(n))/(n+1) - log(A(n)), where A(n) is the n-th Bendersky constant.
%F A266270 zeta'(-15) = -4325053069/2940537600 - log(A(15)).
%e A266270 -0.400319302807725593843580317520320367201261286266232944284106942....
%t A266270 RealDigits[N[Zeta'[-15], 100]]
%Y A266270 Cf. A075700 (zeta'(0)), A084448 (zeta'(-1)), A240966 (zeta'(-2)), A259068 (zeta'(-3)), A259069 (zeta'(-4)), A259070 (zeta'(-5)), A259071 (zeta'(-6)), A259072 (zeta'(-7)), A259073 (zeta'(-8)), A266260 (zeta'(-9)), A266261 (zeta'(-10)), A266262 (zeta'(-11)), A266263 (zeta'(-12)), A260660 (zeta'(-13)), A266264 (zeta'(-14)), A266271 (zeta'(-16)), A266272 (zeta'(-17)), A266273 (zeta'(-18)), A266274 (zeta'(-19)), A266275 (zeta'(-20)).
%K A266270 nonn,cons
%O A266270 0,1
%A A266270 _G. C. Greubel_, Dec 25 2015