cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A266272 Decimal expansion of zeta'(-17) (the derivative of Riemann's zeta function at -17).

This page as a plain text file.
%I A266272 #17 Jul 16 2021 11:25:40
%S A266272 3,1,2,8,6,4,5,3,3,2,1,2,4,1,5,7,8,7,5,6,8,4,4,5,2,6,3,9,1,5,3,3,3,0,
%T A266272 5,4,8,2,2,6,3,3,9,0,7,7,5,6,5,4,7,9,7,4,2,4,9,1,6,5,7,7,0,6,1,1,4,3,
%U A266272 4,1,1,2,9,6,9,3,4,0,0,5,3,4,7,1,1,7,3,6,2,8,6,6,6,3
%N A266272 Decimal expansion of zeta'(-17) (the derivative of Riemann's zeta function at -17).
%H A266272 G. C. Greubel, <a href="/A266272/b266272.txt">Table of n, a(n) for n = 1..1500</a>
%F A266272 zeta'(-n) = HarmonicNumber(n)*BernoulliB(n+1)/(n+1) - log(A(n)), where A(n) is the n-th Bendersky constant.
%F A266272 zeta'(-17) = 1848652896341/175991175360 - log(A(17)).
%e A266272 3.1286453321241578756844526391533305482263390775654797424916577061....
%t A266272 RealDigits[N[Zeta'[-17], 100]]
%Y A266272 Cf. A075700 (zeta'(0)), A084448 (zeta'(-1)), A240966 (zeta'(-2)), A259068 (zeta'(-3)), A259069 (zeta'(-4)), A259070 (zeta'(-5)), A259071 (zeta'(-6)), A259072 (zeta'(-7)), A259073 (zeta'(-8)), A266260 (zeta'(-9)), A266261 (zeta'(-10)), A266262 (zeta'(-11)), A266263 (zeta'(-12)), A260660 (zeta'(-13)), A266264 (zeta'(-14)), A266270 (zeta'(-15)), A266271 (zeta'(-16)), A266273 (zeta'(-18)), A266274 (zeta'(-19)), A266275 (zeta'(-20)).
%K A266272 nonn,cons
%O A266272 1,1
%A A266272 _G. C. Greubel_, Dec 25 2015
%E A266272 Offset corrected by _Rick L. Shepherd_, May 21 2016