cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A266273 Decimal expansion of zeta'(-18) (the derivative of Riemann's zeta function at -18) (negated).

This page as a plain text file.
%I A266273 #17 Jul 16 2021 11:27:15
%S A266273 1,3,7,4,2,7,6,8,2,5,0,2,1,4,0,5,4,4,3,5,2,2,0,5,6,4,1,9,0,5,1,8,5,5,
%T A266273 1,0,7,3,0,9,5,3,7,2,1,5,7,7,0,4,9,8,5,6,0,4,7,4,5,6,5,1,5,3,4,8,8,8,
%U A266273 9,4,6,3,3,7,8,8,5,8,5,3,8,8,2,3,4,0,6,0,9,9,0,0,3,2,3
%N A266273 Decimal expansion of zeta'(-18) (the derivative of Riemann's zeta function at -18) (negated).
%H A266273 G. C. Greubel, <a href="/A266273/b266273.txt">Table of n, a(n) for n = 2..1500</a>
%F A266273 zeta'(-18) = -(97692469875*zeta(19))/(8*Pi^18) = - log(A(18)).
%F A266273 Equals -(43867/3192)*(zeta(19)/zeta(18)).
%e A266273 -13.74276825021405443522056419051855107309537215770498560....
%t A266273 RealDigits[N[Zeta'[-18], 100]]
%Y A266273 Cf. A075700 (zeta'(0)), A084448 (zeta'(-1)), A240966 (zeta'(-2)), A259068 (zeta'(-3)), A259069 (zeta'(-4)), A259070 (zeta'(-5)), A259071 (zeta'(-6)), A259072 (zeta'(-7)), A259073 (zeta'(-8)), A266260 (zeta'(-9)), A266261 (zeta'(-10)), A266262 (zeta'(-11)), A266263 (zeta'(-12)), A260660 (zeta'(-13)), A266264 (zeta'(-14)), A266270 (zeta'(-15)), A266271 (zeta'(-16)), A266272 (zeta'(-17)), A266274 (zeta'(-19)), A266275 (zeta'(-20)).
%K A266273 nonn,cons
%O A266273 2,2
%A A266273 _G. C. Greubel_, Dec 25 2015
%E A266273 Offset corrected by _Rick L. Shepherd_, May 30 2016