This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A266274 #17 Jul 16 2021 11:29:17 %S A266274 2,9,9,6,5,5,2,9,8,3,1,3,9,2,3,5,1,9,3,9,4,3,1,8,6,5,2,9,7,2,7,4,2,0, %T A266274 1,7,9,1,9,0,8,2,2,6,1,0,9,1,1,5,5,6,5,9,1,5,8,8,1,8,7,1,6,6,8,2,0,5, %U A266274 7,6,1,6,0,2,8,6,7,6,7,7,6,1,1,7,2,6,8,7,3,6,3,0,3,4 %N A266274 Decimal expansion of zeta'(-19) (the derivative of Riemann's zeta function at -19) (negated). %H A266274 G. C. Greubel, <a href="/A266274/b266274.txt">Table of n, a(n) for n = 2..1500</a> %F A266274 zeta'(-n) = (BernoulliB(n+1)*HarmonicNumber(n))/(n+1) - log(A(n)), where A(n) is the n-th Bendersky constant. %F A266274 zeta'(-19) = -48069674759189/512143632000 - log(A(19)). %e A266274 -29.965529831392351939431865297274201791908226109115565915881.... %t A266274 RealDigits[N[Zeta'[-19], 100]] %Y A266274 Cf. A075700 (zeta'(0)), A084448 (zeta'(-1)), A240966 (zeta'(-2)), A259068 (zeta'(-3)), A259069 (zeta'(-4)), A259070 (zeta'(-5)), A259071 (zeta'(-6)), A259072 (zeta'(-7)), A259073 (zeta'(-8)), A266260 (zeta'(-9)), A266261 (zeta'(-10)), A266262 (zeta'(-11)), A266263 (zeta'(-12)), A260660 (zeta'(-13)), A266264 (zeta'(-14)), A266270 (zeta'(-15)), A266271 (zeta'(-16)), A266272 (zeta'(-17)), A266273 (zeta'(-18)), A266275 (zeta'(-20)). %K A266274 nonn,cons %O A266274 2,1 %A A266274 _G. C. Greubel_, Dec 26 2015 %E A266274 Offset corrected by _Rick L. Shepherd_, May 30 2016