A266314 Least positive integer x such that n + x^7 = y^2 + z^2 for some positive integers y and z, or 0 if no such x exists.
2, 1, 2, 13, 1, 3, 7, 1, 2, 1, 3, 15, 1, 6, 11, 11, 1, 1, 2, 1, 2, 2, 7, 3, 1, 1, 3, 5, 1, 2, 7, 1, 2, 1, 2, 5, 1, 4, 3, 1, 1, 2, 2, 7, 1, 2, 7, 3, 5, 1, 2, 1, 1, 2, 11, 21, 5, 1, 3, 5, 1, 3, 3, 3, 1, 2, 2, 1, 4, 2, 3
Offset: 0
Keywords
Examples
a(2) = 2 since 2 + 2^7 = 3^2 + 11^2. a(3) = 13 since 3 + 13^7 = 554^2 + 7902^2. a(5) = 3 since 5 + 3^7 = 16^2 + 44^2. a(6) = 7 since 6 + 7^7 = 30^2 + 907^2. a(462) = 71 since 462 + 71^7 = 456497^2 + 2981062^2.
Links
- Zhi-Wei Sun and Chai Wah Wu, Table of n, a(n) for n = 0..10000 n = 0..2000 from Zhi-Wei Sun
- Zhi-Wei Sun, New conjectures on representations of integers (I), Nanjing Univ. J. Math. Biquarterly 34 (2017), no.2, 97-120. (Cf. Section 5.)
Programs
-
Mathematica
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]] Do[x=1;Label[bb];Do[If[SQ[n+x^7-y^2],Print[n," ",x];Goto[aa]],{y,1,Sqrt[(n+x^7)/2]}];x=x+1;Goto[bb];Label[aa];Continue,{n,1,70}] (* second program: *) xmax = 100; r[n_, x_] := Reduce[y>0 && z>0 && n+x^7 == y^2+z^2, {y, z}, Integers]; a[n_] := For[x=1, x <= xmax, x++, If[r[n, x] =!= False, Return[x]]] /. Null -> 0; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Dec 27 2015 *)
Comments