cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A266362 T(n,k) = Number of n X k binary arrays with rows and columns lexicographically nondecreasing and row and column sums nondecreasing.

Original entry on oeis.org

2, 3, 3, 4, 7, 4, 5, 13, 13, 5, 6, 22, 35, 22, 6, 7, 34, 82, 82, 34, 7, 8, 50, 173, 276, 173, 50, 8, 9, 70, 337, 830, 830, 337, 70, 9, 10, 95, 614, 2278, 3669, 2278, 614, 95, 10, 11, 125, 1060, 5752, 14921, 14921, 5752, 1060, 125, 11, 12, 161, 1749, 13525, 55734, 93085
Offset: 1

Views

Author

R. H. Hardin, Dec 28 2015

Keywords

Comments

Table starts
..2...3....4.....5.......6........7..........8..........9.........10.........11
..3...7...13....22......34.......50.........70.........95........125........161
..4..13...35....82.....173......337........614.......1060.......1749.......2777
..5..22...82...276.....830.....2278.......5752......13525......29864......62455
..6..34..173...830....3669....14921......55734.....191916.....612871....1827072
..7..50..337..2278...14921....93085.....541207....2909244...14424728...66153106
..8..70..614..5752...55734...541207....5061414...44435916..361401441.2711340372
..9..95.1060.13525..191916..2909244...44435916..654427939.9043864160
.10.125.1749.29864..612871.14424728..361401441.9043864160
.11.161.2777.62455.1827072.66153106.2711340372

Examples

			Some solutions for n=4, k=4
..0..0..0..1....0..0..0..1....0..0..1..1....0..0..1..1....0..0..0..0
..0..0..1..1....0..0..0..1....0..1..0..1....0..1..1..1....0..0..0..1
..0..1..1..0....1..1..1..0....0..1..1..1....1..1..0..1....0..1..1..0
..1..0..0..1....1..1..1..0....1..1..1..0....1..1..1..1....0..1..1..1
		

Crossrefs

Column 1 is A000027(n+1).
Column 2 is A002623.

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1) -a(n-2);
k=2: a(n) = 3*a(n-1) -2*a(n-2) -2*a(n-3) +3*a(n-4) -a(n-5);
k=3: a(n) = 5*a(n-1) -9*a(n-2) +6*a(n-3) -6*a(n-7) +9*a(n-8) -5*a(n-9) +a(n-10).