A266362 T(n,k) = Number of n X k binary arrays with rows and columns lexicographically nondecreasing and row and column sums nondecreasing.
2, 3, 3, 4, 7, 4, 5, 13, 13, 5, 6, 22, 35, 22, 6, 7, 34, 82, 82, 34, 7, 8, 50, 173, 276, 173, 50, 8, 9, 70, 337, 830, 830, 337, 70, 9, 10, 95, 614, 2278, 3669, 2278, 614, 95, 10, 11, 125, 1060, 5752, 14921, 14921, 5752, 1060, 125, 11, 12, 161, 1749, 13525, 55734, 93085
Offset: 1
Examples
Some solutions for n=4, k=4 ..0..0..0..1....0..0..0..1....0..0..1..1....0..0..1..1....0..0..0..0 ..0..0..1..1....0..0..0..1....0..1..0..1....0..1..1..1....0..0..0..1 ..0..1..1..0....1..1..1..0....0..1..1..1....1..1..0..1....0..1..1..0 ..1..0..0..1....1..1..1..0....1..1..1..0....1..1..1..1....0..1..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..143
Formula
Empirical for column k:
k=1: a(n) = 2*a(n-1) -a(n-2);
k=2: a(n) = 3*a(n-1) -2*a(n-2) -2*a(n-3) +3*a(n-4) -a(n-5);
k=3: a(n) = 5*a(n-1) -9*a(n-2) +6*a(n-3) -6*a(n-7) +9*a(n-8) -5*a(n-9) +a(n-10).
Comments