A266363 Least positive integer x such that n + x^2 = y^3 + z^4 for some positive integers y and z, or 0 if no such x exists.
3, 1, 302, 5, 47, 2, 362, 6, 1, 372, 14, 61, 4, 2, 70, 3, 1, 24, 5, 3, 2, 14, 364, 1, 2, 8, 10, 1, 454, 6, 848, 7, 15, 7, 3, 18, 14, 13, 1362, 2, 5, 10, 1, 37, 6, 9, 6, 68, 13, 4, 24, 36, 37, 6, 26, 5, 3, 5, 15, 7, 9
Offset: 0
Keywords
Examples
a(0) = 3 since 0 + 3^2 = 2^3 + 1^4. a(2) = 302 since 2 + 302^2 = 45^3 + 3^4. a(3) = 5 since 3 + 5^2 = 3^3 + 1^4. a(38) = 1362 since 38 + 1362^2 = 121^3 + 17^4. a(394) = 110307 since 394 + 110307^2 = 2283^3 + 128^4. a(5546) = 945840 since 5546 + 945840^2 = 9625^3 + 233^4.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 0..10000
Crossrefs
Programs
-
Mathematica
CQ[n_]:=CQ[n]=IntegerQ[n^(1/3)] Do[x=1;Label[bb];Do[If[CQ[n+x^2-y^4],Print[n," ",x];Goto[aa]],{y,1,(n+x^2-1)^(1/4)}];x=x+1;Goto[bb];Label[aa];Continue,{n,0,60}]
Comments