This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A266364 #9 Dec 28 2015 09:12:26 %S A266364 6,1,69,7,1,46,13,5,1,1,2,1,2,4,27,2,1,2,28,3,2,2,37,1,4,1,11,1,2,5,1, %T A266364 5,1,4,2,1,1,8,4,6,8,2,1,1,6,3,3,2,3,1,18,1,2,3,6,9,1,2,6,5,2 %N A266364 Least positive integer x such that n + x^4 = y^2 + z^3 for some positive integers y and z, or 0 if no such x exists. %C A266364 The general conjecture in A266277 implies that for any integer m there are positive integers x, y and z such that m + x^2 = y^3 + z^4. %C A266364 See also A266152 and A266363 for similar sequences. %H A266364 Zhi-Wei Sun, <a href="/A266364/b266364.txt">Table of n, a(n) for n = 0..10000</a> %e A266364 a(0) = 6 since 0 + 6^4 = 28^2 + 8^3. %e A266364 a(2) = 69 since 2 + 69^4 = 44^2 + 283^3. %e A266364 a(5) = 46 since 5 + 46^4 = 1742^2 + 113^3. %e A266364 a(570) = 983 since 570 + 983^4 = 546596^2 + 8595^3. %e A266364 a(8078) = 2255 since 8078 + 2255^4 = 1926054^2 + 28083^3. %t A266364 SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]] %t A266364 Do[x=1;Label[bb];Do[If[SQ[n+x^4-y^3],Print[n," ",x];Goto[aa]],{y,1,(n+x^4-1)^(1/3)}];x=x+1;Goto[bb];Label[aa];Continue,{n,0,60}] %Y A266364 Cf. A000290, A000578, A000583, A266152, A266153, A266230, A266231, A266277, A266314, A266363. %K A266364 nonn %O A266364 0,1 %A A266364 _Zhi-Wei Sun_, Dec 28 2015