cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A266382 Decimal representation of the n-th iteration of the "Rule 22" elementary cellular automaton starting with a single ON (black) cell.

This page as a plain text file.
%I A266382 #27 Feb 16 2025 08:33:28
%S A266382 1,7,17,119,257,1799,4369,30583,65537,458759,1114129,7798903,16843009,
%T A266382 117901063,286331153,2004318071,4294967297,30064771079,73014444049,
%U A266382 511101108343,1103806595329,7726646167303,18764712120593,131352984844151,281479271743489
%N A266382 Decimal representation of the n-th iteration of the "Rule 22" elementary cellular automaton starting with a single ON (black) cell.
%C A266382 Empirical observation: This sequence can also be generated in Conway's Game of Life by setting the initial condition to be an infinite row of ON cells in both directions. After each iteration, rows of cells turned ON will be labeled as 1 and rows that are OFF will be labeled 0. When the resulting binary number is converted to decimal notation, the resulting sequence is the same as A266382. [_Brook Estifanos_, Mar 09 2016]
%D A266382 S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
%H A266382 Robert Price, <a href="/A266382/b266382.txt">Table of n, a(n) for n = 0..1000</a>
%H A266382 A. J. Macfarlane, <a href="http://www.damtp.cam.ac.uk/user/ajm/Papers2016/GFsForCAsOfEvenRuleNo.ps">Generating functions for integer sequences defined by the evolution of cellular automata...</a>, Fig. 6
%H A266382 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>
%H A266382 <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>
%H A266382 <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a>
%t A266382 rule=22; rows=30; ca=CellularAutomaton[rule,{{1},0},rows-1,{All,All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]],{rows-k+1,rows+k-1}],{k,1,rows}]; (* Truncated list of each row *) Table[FromDigits[catri[[k]],2],{k,1,rows}] (* Decimal Representation of Rows *)
%Y A266382 Cf. A071029.
%K A266382 nonn,easy
%O A266382 0,2
%A A266382 _Robert Price_, Dec 28 2015