A266387 Number of orbits of Aut(Z^7) as function of the infinity norm n of the representative lattice point of the orbit, when the cardinality of the orbit is equal to 322560.
0, 0, 0, 0, 0, 7, 42, 147, 392, 882, 1764, 3234, 5544, 9009, 14014, 21021, 30576, 43316, 59976, 81396, 108528, 142443, 184338, 235543, 297528, 371910, 460460, 565110, 687960, 831285, 997542, 1189377, 1409632, 1661352, 1947792, 2272424, 2638944, 3051279
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
Crossrefs
Programs
-
Mathematica
Join[{0, 0, 0, 0, 0},Table[Abs[SeriesCoefficient[Series[7/(x+6/(x - 5/2/(x + ContinuedFractionK[If[Mod[k, 2] ==0, (7 + k/2)/(6 + 2 k), ((k + 1)/2 - 5)/(2 (k - 1) +6)], x, {k, 0, 8}]))), {x, Infinity, 101}],2 n + 1]], {n, 0, 50}]] - (* Benedict W. J. Irwin, Feb 09 2016 *)
-
PARI
concat(vector(5), Vec(7*x^6/(1-x)^6 + O(x^50))) \\ Colin Barker, May 04 2016
Formula
From Colin Barker, Dec 29 2015: (Start)
a(n) = 7*(n-1)*(n-2)*(n-3)*(n-4)*(n-5)/120.
a(n) = 6*a(n-1)-15*a(n-2)+20*a(n-3)-15*a(n-4)+6*a(n-5)-a(n-6) for n>6.
G.f.: 7*x^6 / (1-x)^6.
(End)
Comments