cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A266390 Decimal expansion of exponential growth rate of number of labeled planar graphs on n vertices.

This page as a plain text file.
%I A266390 #33 Jan 13 2016 00:34:23
%S A266390 2,7,2,2,6,8,7,7,7,6,8,5,8,8,5,7,6,4,6,7,0,7,9,4,5,8,0,5,1,4,9,4,4,5,
%T A266390 8,2,8,7,4,8,9,8,0,1,5,8,7,7,8,6,8,3,6,0,1,0,7,2,4,0,8,6,9,4,3,6,1,9,
%U A266390 3,3,4,9,7,6,2,6,2,3,1,3,7,2,1
%N A266390 Decimal expansion of exponential growth rate of number of labeled planar graphs on n vertices.
%H A266390 Gheorghe Coserea, <a href="/A266390/b266390.txt">Table of n, a(n) for n = 2..51000</a>
%H A266390 Omer Giménez, Marc Noy, <a href="http://dx.doi.org/10.1007/978-3-0348-7915-6_12">Estimating the Growth Constant of Labelled Planar Graphs</a>, Mathematics and Computer Science III, Part of the series Trends in Mathematics 2004, pp. 133-139.
%H A266390 Omer Gimenez, Marc Noy, <a href="http://dx.doi.org/10.1090/S0894-0347-08-00624-3">Asymptotic enumeration and limit laws of planar graphs</a>, J. Amer. Math. Soc. 22 (2009), 309-329.
%F A266390 Equals 1/R(A266389), where function t->R(t) is defined in the PARI code.
%F A266390 A066537(n) ~ A266391 * A266390^n * n^(-7/2) * n!.
%e A266390 27.2268777685...
%o A266390 (PARI)
%o A266390 A266389= 0.6263716633;
%o A266390 A1(t)  = log(1+t) * (3*t-1) * (1+t)^3 / (16*t^3);
%o A266390 A2(t)  = log(1+2*t) * (1+3*t) * (1-t)^3 / (32*t^3);
%o A266390 A3(t)  = (1-t) * (185*t^4 + 698*t^3 - 217*t^2 - 160*t + 6);
%o A266390 A4(t)  = 64*t * (1+3*t)^2 * (3+t);
%o A266390 A(t)   = A1(t) + A2(t) + A3(t) / A4(t);
%o A266390 R(t)   = 1/16 * sqrt(1+3*t) * (1/t - 1)^3 * exp(A(t));
%o A266390 1/R(A266389)
%Y A266390 Cf. A066537, A266389, A266391.
%K A266390 nonn,cons
%O A266390 2,1
%A A266390 _Gheorghe Coserea_, Dec 28 2015