cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A266395 Number of orbits of Aut(Z^7) as function of the infinity norm n of the representative lattice point of the orbit, when the cardinality of the orbit is equal to 161280.

This page as a plain text file.
%I A266395 #15 Mar 08 2021 10:56:14
%S A266395 0,0,0,0,15,75,225,525,1050,1890,3150,4950,7425,10725,15015,20475,
%T A266395 27300,35700,45900,58140,72675,89775,109725,132825,159390,189750,
%U A266395 224250,263250,307125,356265,411075,471975,539400,613800,695640,785400,883575,990675,1107225
%N A266395 Number of orbits of Aut(Z^7) as function of the infinity norm n of the representative lattice point of the orbit, when the cardinality of the orbit is equal to 161280.
%H A266395 Colin Barker, <a href="/A266395/b266395.txt">Table of n, a(n) for n = 1..1000</a>
%H A266395 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1).
%F A266395 From _Colin Barker_, Dec 29 2015: (Start)
%F A266395 a(n) = 5*(n-1)*(n-2)*(n-3)*(n-4)/8 = 15*A000332(n-1).
%F A266395 a(n) = 5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+a(n-5) for n>5.
%F A266395 G.f.: 15*x^5 / (1-x)^5.
%F A266395 (End)
%o A266395 (PARI) concat(vector(4), Vec(15*x^5/(1-x)^5 + O(x^50))) \\ _Colin Barker_, May 05 2016
%Y A266395 Number of orbits of Aut(Z^7) as function of the infinity norm A000579, A154286, A102860, A002412, A045943, A115067, A008586, A008585, A005843, A001477, A000217.
%K A266395 nonn,easy
%O A266395 1,5
%A A266395 _Philippe A.J.G. Chevalier_, Dec 29 2015