cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A266396 Number of orbits of Aut(Z^7) as function of the infinity norm n of the representative lattice point of the orbit, when the cardinality of the orbit is equal to 80640.

This page as a plain text file.
%I A266396 #11 Nov 18 2024 12:40:48
%S A266396 0,0,0,10,41,105,215,385,630,966,1410,1980,2695,3575,4641,5915,7420,
%T A266396 9180,11220,13566,16245,19285,22715,26565,30866,35650,40950,46800,
%U A266396 53235,60291,68005,76415,85560,95480,106216,117810,130305,143745,158175,173641,190190
%N A266396 Number of orbits of Aut(Z^7) as function of the infinity norm n of the representative lattice point of the orbit, when the cardinality of the orbit is equal to 80640.
%H A266396 Colin Barker, <a href="/A266396/b266396.txt">Table of n, a(n) for n = 1..1000</a>
%H A266396 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1).
%F A266396 From _Colin Barker_, Dec 29 2015: (Start)
%F A266396 a(n) = (n^4+30*n^3-205*n^2+390*n-216)/24.
%F A266396 a(n) = 5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+a(n-5) for n>5.
%F A266396 G.f.: x^4*(10-9*x) / (1-x)^5.
%F A266396 (End)
%t A266396 LinearRecurrence[{5,-10,10,-5,1},{0,0,0,10,41},50] (* _Harvey P. Dale_, Nov 18 2024 *)
%o A266396 (PARI) concat(vector(3), Vec(x^4*(10-9*x)/(1-x)^5 + O(x^50))) \\ _Colin Barker_, May 05 2016
%Y A266396 Number of orbits of Aut(Z^7) as function of the infinity norm A000579, A154286, A102860, A002412, A045943, A115067, A008586, A008585, A005843, A001477, A000217.
%K A266396 nonn,easy
%O A266396 1,4
%A A266396 _Philippe A.J.G. Chevalier_, Dec 29 2015