This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A266397 #9 May 05 2016 08:43:50 %S A266397 0,0,9,31,70,130,215,329,476,660,885,1155,1474,1846,2275,2765,3320, %T A266397 3944,4641,5415,6270,7210,8239,9361,10580,11900,13325,14859,16506, %U A266397 18270,20155,22165,24304,26576,28985,31535,34230,37074,40071,43225,46540,50020,53669 %N A266397 Number of orbits of Aut(Z^7) as function of the infinity norm n of the representative lattice point of the orbit, when the cardinality of the orbit is equal to 26880. %H A266397 Colin Barker, <a href="/A266397/b266397.txt">Table of n, a(n) for n = 1..1000</a> %H A266397 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1). %F A266397 From _Colin Barker_, Dec 29 2015: (Start) %F A266397 a(n) = (4*n^3+3*n^2-37*n+30)/6. %F A266397 a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4) for n>4. %F A266397 G.f.: x^3*(9-5*x) / (1-x)^4. %F A266397 (End) %o A266397 (PARI) concat(vector(2), Vec(x^3*(9-5*x)/(1-x)^4 + O(x^50))) \\ _Colin Barker_, May 05 2016 %Y A266397 Number of orbits of Aut(Z^7) as function of the infinity norm A000579, A154286, A102860, A002412, A045943, A115067, A008586, A008585, A005843, A001477, A000217. %K A266397 nonn,easy %O A266397 1,3 %A A266397 _Philippe A.J.G. Chevalier_, Dec 29 2015