cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A266398 Number of orbits of Aut(Z^7) as function of the infinity norm n of the representative lattice point of the orbit, when the cardinality of the orbit is equal to 13440.

This page as a plain text file.
%I A266398 #13 May 05 2016 08:43:57
%S A266398 0,0,12,37,76,130,200,287,392,516,660,825,1012,1222,1456,1715,2000,
%T A266398 2312,2652,3021,3420,3850,4312,4807,5336,5900,6500,7137,7812,8526,
%U A266398 9280,10075,10912,11792,12716,13685,14700,15762,16872,18031,19240,20500,21812,23177
%N A266398 Number of orbits of Aut(Z^7) as function of the infinity norm n of the representative lattice point of the orbit, when the cardinality of the orbit is equal to 13440.
%H A266398 Colin Barker, <a href="/A266398/b266398.txt">Table of n, a(n) for n = 1..1000</a>
%H A266398 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1).
%F A266398 From _Colin Barker_, Dec 29 2015: (Start)
%F A266398 a(n) = (n^3+30*n^2-97*n+66)/6.
%F A266398 a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4) for n>4.
%F A266398 G.f.: x^3*(12-11*x) / (1-x)^4.
%F A266398 (End)
%o A266398 (PARI) concat(vector(2), Vec(x^3*(12-11*x)/(1-x)^4 + O(x^50))) \\ _Colin Barker_, May 05 2016
%Y A266398 Number of orbits of Aut(Z^7) as function of the infinity norm A000579, A154286, A102860, A002112, A045943, A115067, A008586, A008585, A005843, A001477, A000217.
%K A266398 nonn,easy
%O A266398 1,3
%A A266398 _Philippe A.J.G. Chevalier_, Dec 29 2015