A266423 Number of n X 3 binary arrays with rows and columns lexicographically nondecreasing and column sums nondecreasing.
4, 14, 39, 96, 212, 433, 826, 1493, 2575, 4270, 6841, 10639, 16114, 23845, 34555, 49147, 68725, 94637, 128501, 172257, 228199, 299035, 387927, 498560, 635189, 802719, 1006760, 1253717, 1550855, 1906400, 2329613, 2830904, 3421916, 4115651
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0..0..1....0..0..1....0..0..0....0..0..0....0..0..1....0..0..0....0..0..1 ..0..0..1....0..1..1....0..0..0....0..0..1....0..1..1....0..0..0....0..1..1 ..1..1..0....1..1..0....0..0..1....0..1..1....0..1..1....0..0..0....1..1..1 ..1..1..0....1..1..1....1..1..1....0..1..1....0..1..1....1..1..1....1..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..200
Crossrefs
Column 3 of A266428.
Formula
Empirical: a(n) = 5*a(n-1) - 8*a(n-2) + a(n-3) + 9*a(n-4) - 6*a(n-5) - 6*a(n-7) + 9*a(n-8) + a(n-9) - 8*a(n-10) + 5*a(n-11) - a(n-12).
Empirical g.f.: x*(4 - 6*x + x^2 + 9*x^3 - 6*x^4 - 6*x^6 + 9*x^7 + x^8 - 8*x^9 + 5*x^10 - x^11) / ((1 - x)^8*(1 + x)^2*(1 + x + x^2)). - Colin Barker, Jan 09 2019