A266428 T(n,k)=Number of nXk binary arrays with rows and columns lexicographically nondecreasing and column sums nondecreasing.
2, 3, 3, 4, 7, 4, 5, 14, 13, 5, 6, 25, 39, 22, 6, 7, 41, 106, 96, 34, 7, 8, 63, 259, 404, 212, 50, 8, 9, 92, 574, 1556, 1391, 433, 70, 9, 10, 129, 1170, 5365, 8764, 4383, 826, 95, 10, 11, 175, 2223, 16585, 49894, 45907, 12758, 1493, 125, 11, 12, 231, 3982, 46463, 251381
Offset: 1
Examples
Some solutions for n=4 k=4 ..0..0..0..0....0..0..1..1....0..0..0..1....0..0..1..1....0..0..0..1 ..0..0..0..1....0..0..1..1....0..0..1..0....0..1..0..1....0..1..1..1 ..0..0..1..1....1..1..0..1....0..1..1..1....0..1..1..1....0..1..1..1 ..0..1..0..1....1..1..1..0....1..1..0..0....1..1..1..0....1..0..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..145
Formula
Empirical for column k:
k=1: a(n) = 2*a(n-1) -a(n-2)
k=2: a(n) = 3*a(n-1) -2*a(n-2) -2*a(n-3) +3*a(n-4) -a(n-5)
k=3: [order 12] Empirical for row n:
n=1: a(n) = n + 1
n=2: a(n) = (1/6)*n^3 + (1/2)*n^2 + (4/3)*n + 1
n=3: [polynomial of degree 6]
n=4: [polynomial of degree 11]
n=5: [polynomial of degree 19]
n=6: [polynomial of degree 33]
n=7: [polynomial of degree 57]
Comments