A266429 Number of 3 X n binary arrays with rows and columns lexicographically nondecreasing and column sums nondecreasing.
4, 13, 39, 106, 259, 574, 1170, 2223, 3982, 6787, 11089, 17472, 26677, 39628, 57460, 81549, 113544, 155401, 209419, 278278, 365079, 473386, 607270, 771355, 970866, 1211679, 1500373, 1844284, 2251561, 2731224, 3293224, 3948505, 4709068, 5588037
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0..0..0..1....0..1..1..1....0..0..0..1....0..0..1..1....0..0..0..0 ..0..0..1..0....0..1..1..1....0..0..0..1....0..0..1..1....0..0..1..1 ..0..0..1..1....1..0..0..1....0..0..0..1....0..1..1..1....1..1..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Row 3 of A266428.
Formula
Empirical: a(n) = (1/360)*n^6 + (1/40)*n^5 + (1/9)*n^4 + (7/24)*n^3 + (319/360)*n^2 + (101/60)*n + 1.
Conjectures from Colin Barker, Jan 09 2019: (Start)
G.f.: x*(4 - 15*x + 32*x^2 - 34*x^3 + 21*x^4 - 7*x^5 + x^6) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>7.
(End)