cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A266429 Number of 3 X n binary arrays with rows and columns lexicographically nondecreasing and column sums nondecreasing.

Original entry on oeis.org

4, 13, 39, 106, 259, 574, 1170, 2223, 3982, 6787, 11089, 17472, 26677, 39628, 57460, 81549, 113544, 155401, 209419, 278278, 365079, 473386, 607270, 771355, 970866, 1211679, 1500373, 1844284, 2251561, 2731224, 3293224, 3948505, 4709068, 5588037
Offset: 1

Views

Author

R. H. Hardin, Dec 29 2015

Keywords

Examples

			Some solutions for n=4:
..0..0..0..1....0..1..1..1....0..0..0..1....0..0..1..1....0..0..0..0
..0..0..1..0....0..1..1..1....0..0..0..1....0..0..1..1....0..0..1..1
..0..0..1..1....1..0..0..1....0..0..0..1....0..1..1..1....1..1..0..0
		

Crossrefs

Row 3 of A266428.

Formula

Empirical: a(n) = (1/360)*n^6 + (1/40)*n^5 + (1/9)*n^4 + (7/24)*n^3 + (319/360)*n^2 + (101/60)*n + 1.
Conjectures from Colin Barker, Jan 09 2019: (Start)
G.f.: x*(4 - 15*x + 32*x^2 - 34*x^3 + 21*x^4 - 7*x^5 + x^6) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>7.
(End)