A266431 Number of 5Xn binary arrays with rows and columns lexicographically nondecreasing and column sums nondecreasing.
6, 34, 212, 1391, 8764, 49894, 251381, 1122721, 4490732, 16284683, 54165714, 166968275, 481237398, 1306708520, 3364174219, 8257222586, 19412425379, 43890267973, 95767324137, 202278568268, 414691101885, 827108931171
Offset: 1
Keywords
Examples
Some solutions for n=4 ..0..0..1..1....0..1..1..1....0..0..1..1....0..0..0..1....0..0..0..1 ..0..0..1..1....0..1..1..1....0..1..0..1....0..0..1..1....0..0..1..0 ..0..0..1..1....0..1..1..1....1..0..1..0....0..1..1..1....0..0..1..1 ..0..1..0..0....1..1..1..1....1..1..0..0....1..0..1..1....0..1..1..1 ..1..1..0..0....1..1..1..1....1..1..1..1....1..1..1..0....1..1..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A266428.
Formula
Empirical: a(n) = (1/7602818775552000)*n^19 + (1/47076277248000)*n^18 + (389/266765571072000)*n^17 + (47/815173632000)*n^16 + (11629/7846046208000)*n^15 + (413249/15692092416000)*n^14 + (7941701/23538138624000)*n^13 + (23266079/7242504192000)*n^12 + (14091433/603542016000)*n^11 + (267047/1959552000)*n^10 + (794703337/1207084032000)*n^9 + (14650018639/4828336128000)*n^8 + (267287875667/23538138624000)*n^7 + (102484112767/2139830784000)*n^6 + (39001810891/326918592000)*n^5 + (73310538271/186810624000)*n^4 + (87546462023/102918816000)*n^3 + (113077535/72648576)*n^2 + (469781209/232792560)*n + 1
Comments