cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A266435 Binary representation of the n-th iteration of the "Rule 23" elementary cellular automaton starting with a single ON (black) cell.

This page as a plain text file.
%I A266435 #31 Aug 22 2025 15:35:30
%S A266435 1,111,0,1111111,0,11111111111,0,111111111111111,0,
%T A266435 1111111111111111111,0,11111111111111111111111,0,
%U A266435 111111111111111111111111111,0,1111111111111111111111111111111,0,11111111111111111111111111111111111,0,111111111111111111111111111111111111111
%N A266435 Binary representation of the n-th iteration of the "Rule 23" elementary cellular automaton starting with a single ON (black) cell.
%C A266435 Rules 31, 55, 63, 87, 95, 119 and 127 also generate this sequence.
%D A266435 S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
%H A266435 Robert Price, <a href="/A266435/b266435.txt">Table of n, a(n) for n = 0..500</a>
%H A266435 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>
%H A266435 S. Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a>
%H A266435 <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>
%H A266435 <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a>
%F A266435 From _Colin Barker_, Dec 30 2015 and Apr 15 2019: (Start)
%F A266435 a(n) = ((-1)^n-1)*(1-10^(2*n+1))/18 for n>0.
%F A266435 a(n) = 10001*a(n-2)-10000*a(n-4) for n>4.
%F A266435 G.f.: (1+111*x-10001*x^2+1000*x^3+10000*x^4) / ((1-x)*(1+x)*(1-100*x)*(1+100*x)).
%F A266435 (End)
%F A266435 a(n) = (10*100^n-1)/9*(n mod 2) + 0^n. - _Karl V. Keller, Jr._, Aug 11 2021
%t A266435 rule=23; rows=20; ca=CellularAutomaton[rule,{{1},0},rows-1,{All,All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]],{rows-k+1,rows+k-1}],{k,1,rows}]; (* Truncated list of each row *) Table[FromDigits[catri[[k]]],{k,1,rows}]   (* Binary Representation of Rows *)
%o A266435 (Python) print([(10*100**n-1)//9*(n%2) + 0**n for n in range(33)]) # _Karl V. Keller, Jr._, Aug 11 2021
%Y A266435 Cf. A266434, A266436.
%Y A266435 Essentially the same as A266217.
%K A266435 nonn,easy
%O A266435 0,2
%A A266435 _Robert Price_, Dec 29 2015