A266465 Number of n X 3 binary arrays with rows and columns lexicographically nondecreasing and column sums nonincreasing.
2, 5, 12, 29, 67, 147, 303, 590, 1090, 1922, 3253, 5311, 8400, 12918, 19377, 28425, 40873, 57722, 80196, 109776, 148240, 197703, 260666, 340063, 439318, 562401, 713894, 899055, 1123895, 1395251, 1720873, 2109508, 2570998, 3116374, 3757967
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0..0..0....0..0..0....0..1..1....0..1..1....0..0..1....0..0..1....0..0..1 ..0..0..0....0..1..1....1..0..1....1..0..1....0..1..0....1..1..0....0..1..0 ..0..0..0....1..0..0....1..1..0....1..1..0....1..0..0....1..1..1....1..0..0 ..0..0..0....1..1..1....1..1..0....1..1..1....1..1..0....1..1..1....1..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..200
Crossrefs
Column 3 of A266470.
Formula
Empirical: a(n) = 5*a(n-1) - 8*a(n-2) + a(n-3) + 9*a(n-4) - 6*a(n-5) - 6*a(n-7) + 9*a(n-8) + a(n-9) - 8*a(n-10) + 5*a(n-11) - a(n-12).
Empirical g.f.: x*(2 - 5*x + 3*x^2 + 7*x^3 - 5*x^4 - x^5 - 3*x^6 + 7*x^7 - 7*x^9 + 5*x^10 - x^11) / ((1 - x)^8*(1 + x)^2*(1 + x + x^2)). - Colin Barker, Jan 10 2019