A266470 T(n,k) = number of n X k binary arrays with rows and columns lexicographically nondecreasing and column sums nonincreasing.
2, 2, 3, 2, 4, 4, 2, 5, 7, 5, 2, 6, 12, 12, 6, 2, 7, 19, 29, 19, 7, 2, 8, 28, 66, 67, 29, 8, 2, 9, 39, 137, 232, 147, 42, 9, 2, 10, 52, 261, 735, 794, 303, 59, 10, 2, 11, 67, 463, 2090, 4074, 2574, 590, 80, 11, 2, 12, 84, 775, 5371, 18808, 22128, 7797, 1090, 106, 12, 2, 13, 103
Offset: 1
Examples
Some solutions for n=4 k=4 ..0..0..0..0....0..0..0..1....0..0..0..0....0..0..0..0....0..0..0..1 ..0..0..0..1....0..0..1..0....0..0..0..1....0..0..1..1....0..0..1..0 ..0..1..1..0....1..1..0..0....1..1..1..0....1..1..0..0....1..1..0..0 ..1..0..0..0....1..1..1..0....1..1..1..1....1..1..1..1....1..1..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..163
Formula
Empirical for column k:
k=1: a(n) = 2*a(n-1) -a(n-2)
k=2: a(n) = 3*a(n-1) -2*a(n-2) -2*a(n-3) +3*a(n-4) -a(n-5)
k=3: [order 12]
Empirical for row n:
n=1: a(n) = 2
n=2: a(n) = n + 2
n=3: a(n) = n^2 + 3
n=4: [polynomial of degree 5]
n=5: [polynomial of degree 9]
n=6: [polynomial of degree 19]
n=7: [polynomial of degree 34]
Comments