cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A266470 T(n,k) = number of n X k binary arrays with rows and columns lexicographically nondecreasing and column sums nonincreasing.

Original entry on oeis.org

2, 2, 3, 2, 4, 4, 2, 5, 7, 5, 2, 6, 12, 12, 6, 2, 7, 19, 29, 19, 7, 2, 8, 28, 66, 67, 29, 8, 2, 9, 39, 137, 232, 147, 42, 9, 2, 10, 52, 261, 735, 794, 303, 59, 10, 2, 11, 67, 463, 2090, 4074, 2574, 590, 80, 11, 2, 12, 84, 775, 5371, 18808, 22128, 7797, 1090, 106, 12, 2, 13, 103
Offset: 1

Views

Author

R. H. Hardin, Dec 29 2015

Keywords

Comments

Table starts
..2...2....2.....2.......2.........2..........2............2.............2
..3...4....5.....6.......7.........8..........9...........10............11
..4...7...12....19......28........39.........52...........67............84
..5..12...29....66.....137.......261........463..........775..........1237
..6..19...67...232.....735......2090.......5371........12645.........27639
..7..29..147...794....4074.....18808......77320.......285494........959672
..8..42..303..2574...22128....175180....1231170......7652503......42460424
..9..59..590..7797..113677...1595005...20115063....223521350....2195862381
.10..80.1090.22058..544142..13720886..319006954...6568208183..119000455681
.11.106.1922.58469.2417707.109830369.4768598707.185724489849.6373048347212

Examples

			Some solutions for n=4 k=4
..0..0..0..0....0..0..0..1....0..0..0..0....0..0..0..0....0..0..0..1
..0..0..0..1....0..0..1..0....0..0..0..1....0..0..1..1....0..0..1..0
..0..1..1..0....1..1..0..0....1..1..1..0....1..1..0..0....1..1..0..0
..1..0..0..0....1..1..1..0....1..1..1..1....1..1..1..1....1..1..0..0
		

Crossrefs

Column 1 is A000027(n+1).
Row 2 is A000027(n+2).
Row 3 is A117950.

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1) -a(n-2)
k=2: a(n) = 3*a(n-1) -2*a(n-2) -2*a(n-3) +3*a(n-4) -a(n-5)
k=3: [order 12]
Empirical for row n:
n=1: a(n) = 2
n=2: a(n) = n + 2
n=3: a(n) = n^2 + 3
n=4: [polynomial of degree 5]
n=5: [polynomial of degree 9]
n=6: [polynomial of degree 19]
n=7: [polynomial of degree 34]