This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A266471 #8 Jan 10 2019 08:08:43 %S A266471 5,12,29,66,137,261,463,775,1237,1898,2817,4064,5721,7883,10659,14173, %T A266471 18565,23992,30629,38670,48329,59841,73463,89475,108181,129910,155017, %U A266471 183884,216921,254567,297291,345593,400005,461092,529453,605722,690569 %N A266471 Number of 4 X n binary arrays with rows and columns lexicographically nondecreasing and column sums nonincreasing. %H A266471 R. H. Hardin, <a href="/A266471/b266471.txt">Table of n, a(n) for n = 1..210</a> %F A266471 Empirical: a(n) = (1/120)*n^5 + (1/24)*n^4 + (17/24)*n^3 - (25/24)*n^2 + (257/60)*n + 1. %F A266471 Conjectures from _Colin Barker_, Jan 10 2019: (Start) %F A266471 G.f.: x*(5 - 18*x + 32*x^2 - 28*x^3 + 11*x^4 - x^5) / (1 - x)^6. %F A266471 a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>6. %F A266471 (End) %e A266471 Some solutions for n=4: %e A266471 ..0..0..0..0....0..0..0..0....0..1..1..1....0..0..0..0....0..0..1..1 %e A266471 ..0..0..0..0....0..0..0..0....1..0..0..0....0..0..1..1....0..1..0..0 %e A266471 ..1..1..1..1....0..0..0..0....1..0..1..1....1..1..0..0....1..0..0..0 %e A266471 ..1..1..1..1....1..1..1..1....1..1..0..0....1..1..1..1....1..1..1..1 %Y A266471 Row 4 of A266470. %K A266471 nonn %O A266471 1,1 %A A266471 _R. H. Hardin_, Dec 29 2015