cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A266473 Number of 6Xn binary arrays with rows and columns lexicographically nondecreasing and column sums nonincreasing.

This page as a plain text file.
%I A266473 #4 Dec 29 2015 19:59:11
%S A266473 7,29,147,794,4074,18808,77320,285494,959672,2975483,8605341,23428725,
%T A266473 60497931,149066593,352233950,801471439,1762213254,3755124007,
%U A266473 7774777259,15675004492,30833594755,59276323572,111542905766,205731574732
%N A266473 Number of 6Xn binary arrays with rows and columns lexicographically nondecreasing and column sums nonincreasing.
%C A266473 Row 6 of A266470.
%H A266473 R. H. Hardin, <a href="/A266473/b266473.txt">Table of n, a(n) for n = 1..210</a>
%F A266473 Empirical: a(n) = (1/121645100408832000)*n^19 + (1/914624815104000)*n^18 + (37/533531142144000)*n^17 + (89/31384184832000)*n^16 + (1039/12553673932800)*n^15 + (116807/62768369664000)*n^14 + (3153461/94152554496000)*n^13 + (511019/1034643456000)*n^12 + (57504877/9656672256000)*n^11 + (48689987/877879296000)*n^10 + (475429693/1207084032000)*n^9 + (2471183497/1207084032000)*n^8 + (117295069721/23538138624000)*n^7 + (79279038437/3362591232000)*n^6 + (2282457077/12108096000)*n^5 - (6773798653/40864824000)*n^4 + (20107095509/9648639000)*n^3 - (10497092849/7718911200)*n^2 + (607842269/116396280)*n + 1
%e A266473 Some solutions for n=4
%e A266473 ..0..0..1..1....0..0..0..1....0..0..0..1....0..0..1..1....0..0..0..1
%e A266473 ..0..1..0..0....1..1..1..0....0..0..1..0....0..1..1..1....0..0..1..0
%e A266473 ..0..1..0..1....1..1..1..0....0..0..1..0....1..0..1..1....0..1..1..0
%e A266473 ..1..0..0..1....1..1..1..1....0..1..0..0....1..1..0..0....1..0..0..0
%e A266473 ..1..0..1..0....1..1..1..1....1..0..0..1....1..1..0..0....1..0..0..0
%e A266473 ..1..1..1..0....1..1..1..1....1..1..0..0....1..1..1..1....1..1..0..1
%Y A266473 Cf. A266470.
%K A266473 nonn
%O A266473 1,1
%A A266473 _R. H. Hardin_, Dec 29 2015