cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A266477 Triangle read by rows in which T(n,k) is the number of partitions of n with product of multiplicities of parts equal to k; n>=0, 1<=k<=A266480(n).

This page as a plain text file.
%I A266477 #39 May 24 2018 18:32:24
%S A266477 1,1,1,1,2,0,1,2,2,0,1,3,2,1,0,1,4,2,2,2,0,1,5,4,2,1,1,1,1,6,6,2,3,1,
%T A266477 2,0,2,8,7,4,4,1,2,1,0,2,1,10,8,6,6,3,2,1,3,0,1,0,2,12,13,6,6,3,7,1,2,
%U A266477 1,1,1,1,0,1,1,15,15,9,11,3,6,2,5,3,3,0
%N A266477 Triangle read by rows in which T(n,k) is the number of partitions of n with product of multiplicities of parts equal to k; n>=0, 1<=k<=A266480(n).
%C A266477 Sum of entries in row n = A000041(n) = number of partitions of n.
%C A266477 T(n,1) = A000009(n) = number of partitions of n into distinct parts.
%C A266477 T(n,2) = A090858(n).
%C A266477 T(n,3) = A265251(n).
%C A266477 Smallest row m >= 0 with T(m,n) > 0 is A266325(n).
%C A266477 T(n,A266480(n)) gives A266871(n).
%H A266477 Alois P. Heinz, <a href="/A266477/b266477.txt">Rows n = 0..50, flattened</a>
%F A266477 Sum_{k>=1} k*T(n,k) = A077285(n).
%F A266477 G.f. of column p if p is prime: Sum_{k>0} x^(p*k)/(1+x^k) * Product_{i>0} (1+x^i), giving the number of partitions of n such that there is exactly one part which occurs p times, while all other parts occur only once.
%F A266477 If p is prime then column p is asymptotic to 3^(1/4) * c(p) * exp(Pi*sqrt(n/3)) / (2*Pi*n^(1/4)), where c(p) = Sum_{j>=0} (-1)^j/(j+p) = (PolyGamma((p+1)/2) - PolyGamma(p/2))/2. - _Vaclav Kotesovec_, May 24 2018
%e A266477 Row 4 is [2,2,0,1]. Indeed, the products of the multiplicities of the parts in the partitions [4], [1,3], [2,2], [1,1,2], [1,1,1,1] are 1, 1, 2, 2, 4, respectively.
%e A266477 Triangle T(n,k) begins:
%e A266477 00 :  1;
%e A266477 01 :  1;
%e A266477 02 :  1,  1;
%e A266477 03 :  2,  0, 1;
%e A266477 04 :  2,  2, 0,  1;
%e A266477 05 :  3,  2, 1,  0, 1;
%e A266477 06 :  4,  2, 2,  2, 0, 1;
%e A266477 07 :  5,  4, 2,  1, 1, 1, 1;
%e A266477 08 :  6,  6, 2,  3, 1, 2, 0, 2;
%e A266477 09 :  8,  7, 4,  4, 1, 2, 1, 0, 2, 1;
%e A266477 10 : 10,  8, 6,  6, 3, 2, 1, 3, 0, 1, 0, 2;
%e A266477 11 : 12, 13, 6,  6, 3, 7, 1, 2, 1, 1, 1, 1, 0, 1, 1;
%e A266477 12 : 15, 15, 9, 11, 3, 6, 2, 5, 3, 3, 0, 2, 0, 0, 0, 2, 0, 1;
%p A266477 b:= proc(n, i, p) option remember; `if`(n=0 or i=1,
%p A266477       x^max(p, p*n), add(b(n-i*j, i-1, max(p, p*j)), j=0..n/i))
%p A266477     end:
%p A266477 T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(b(n$2, 1)):
%p A266477 seq(T(n), n=0..16);
%t A266477 Map[Table[Length@ Position[#, k], {k, Max@ #}] &, #] &@ Table[Map[Times @@ Map[Last, Tally@ #] &, IntegerPartitions@ n], {n, 12}] // Flatten (* _Michael De Vlieger_, Dec 31 2015 *)
%t A266477 b[n_, i_, p_] := b[n, i, p] = If[n == 0 || i == 1, x^Max[p, p*n], Sum[b[n - i*j, i - 1, Max[p, p*j]], {j, 0, n/i}]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 1, Exponent[p,x]}]][ b[n, n, 1]]; Table[T[n], {n, 0, 16}] // Flatten (* _Jean-François Alcover_, Aug 29 2016, after _Alois P. Heinz_ *)
%Y A266477 Columns k=1-10 give: A000009, A090858, A265251, A266687, A266688, A266689, A266690, A266691, A266692, A266693.
%Y A266477 Main diagonal gives A266499.
%Y A266477 Row lengths give A266480.
%Y A266477 Cf. A000041, A077285, A266325, A266871.
%K A266477 nonn,tabf
%O A266477 0,5
%A A266477 _Emeric Deutsch_ and _Alois P. Heinz_, Dec 29 2015