This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A266491 #55 Sep 08 2022 08:46:15 %S A266491 0,1,4,6,4,5,12,14,8,9,20,22,12,13,28,30,16,17,36,38,20,21,44,46,24, %T A266491 25,52,54,28,29,60,62,32,33,68,70,36,37,76,78,40,41,84,86,44,45,92,94, %U A266491 48,49,100,102,52,53,108,110,56,57,116,118,60,61,124,126,64 %N A266491 a(n) = n*A130658(n). %C A266491 Successive differences: %C A266491 r(0): 0, 1, 4, 6, 4, 5, 12, 14, ... %C A266491 r(1): 1, 3, 2, -2, 1, 7, 2, -6, ... %C A266491 r(2): 2, -1, -4, 3, 6, -5, -8, 7, ... (see A103889) %C A266491 r(3): -3, -3, 7, 3, -11, -3, 15, 3, ... %C A266491 r(4): 0, 10, -4, -14, 8, 18, -12, -22, ... %C A266491 r(5): 10, -14, -10, 22, 10, -30, -10, 38, ... %C A266491 r(6): -24, 4, 32, -12, -40, 20, 48, -28, ... %C A266491 r(7): 28, 28, -44, -28, 60, 28, -76, -28, ... %C A266491 r(8): 0, -72, 16, 88, -32, -104, 48, 120, ... %C A266491 r(9): -72, 88, 72, -120, -72, 152, 72, -184, ... %C A266491 r(10): 160, -16, -192, 48, 224, -80, -256, 112, ... %C A266491 etc. %C A266491 Let b(n) = 1, 1, 1, 1, 2, 2, 4, 4, 8, 8, 16, 16, ..., with n>=0, which is formed from the terms of A011782 repeated twice. %C A266491 Conjecture: all terms of the row r(i) are divisible by b(i). %C A266491 Conjecture: the terms of the first column divided by b(n) provide 0, 1, 2, -3, 0, 5, -6, 7, 0, -9, 10, -11, ..., the absolute values of which are listed in A190621. %F A266491 a(n) = n*(3 - (-1)^((n-1)*n/2))/2. %F A266491 a(n) = a(n-4) + 4*A130658(n) for n>3. %F A266491 a(n) = 2*a(n-1) -3*a(n-2) +4*a(n-3) -3*(n-4) +2*a(n-5) -a(n-6) for n>5. %F A266491 G.f.: x*(3/(1 - x)^2 + 2*x/(1 + x^2)^2 - (1 - x^2)/(1 + x^2)^2)/2. - _Michael De Vlieger_, Jan 04 2016 %t A266491 Table[n (3 - (-1)^((n - 1) n/2))/2, {n, 0, 55}] %t A266491 Table[n (Boole@ OddQ@ Floor[n/2] + 1), {n, 0, 55}] (* or *) Table[SeriesCoefficient[x (3/(1 - x)^2 + 2 x/(1 + x^2)^2 - (1 - x^2)/(1 + x^2)^2)/2, {x, 0, n}], {n, 0, 55}] (* _Michael De Vlieger_, Jan 04 2016 *) %o A266491 (PARI) vector(60, n, n--; n*(3-(-1)^((n-1)*n/2))/2) \\ _Altug Alkan_, Jan 04 2016 %o A266491 (Magma) [n*(3-(-1)^((n-1)*n div 2))/2: n in [0..70]]; // _Vincenzo Librandi_, Jan 08 2016 %Y A266491 Cf. A005408, A011782, A042963, A058962, A103889, A128135, A130658, A190621, A227380. %K A266491 nonn,easy %O A266491 0,3 %A A266491 _Paul Curtz_, Dec 30 2015 %E A266491 Edited by _Bruno Berselli_, Jan 07 2016