This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A266513 #28 Feb 16 2025 08:33:28 %S A266513 0,1,11,110,2402,128967,16767653,5436906668,4406952731948, %T A266513 8819634719356421,43329348004927734247,522235268182347360718818, %U A266513 15436131339319739257518081878,1117847654274955574635482276231683,198163274851163063009517020867737770265 %N A266513 Number of undirected cycles in a triangular grid graph, n vertices on each side. %H A266513 Ed Wynn, <a href="/A266513/b266513.txt">Table of n, a(n) for n = 1..17</a> %H A266513 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GraphCycle.html">Graph Cycle</a> %H A266513 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/TriangularGridGraph.html">Triangular Grid Graph</a> %e A266513 Of the 11 cycles in the triangular grid with 3 vertices per side, 4 have length 3, 3 have length 4, 3 have length 5 and 1 has length 6. %e A266513 4 basic cycle shapes on a(3): %e A266513 o %e A266513 / \ %e A266513 o o---o o---o o o %e A266513 / \ / / / \ / \ %e A266513 o---o o---o o---o---o o---o---o %o A266513 (Python) %o A266513 # Using graphillion %o A266513 from graphillion import GraphSet %o A266513 def make_n_triangular_grid_graph(n): %o A266513 s = 1 %o A266513 grids = [] %o A266513 for i in range(n + 1, 1, -1): %o A266513 for j in range(i - 1): %o A266513 a, b, c = s + j, s + j + 1, s + i + j %o A266513 grids.extend([(a, b), (a, c), (b, c)]) %o A266513 s += i %o A266513 return grids %o A266513 def A266513(n): %o A266513 if n == 1: return 0 %o A266513 universe = make_n_triangular_grid_graph(n - 1) %o A266513 GraphSet.set_universe(universe) %o A266513 cycles = GraphSet.cycles() %o A266513 return cycles.len() %o A266513 print([A266513(n) for n in range(1, 12)]) # _Seiichi Manyama_, Nov 30 2020 %Y A266513 Cf. A112676, A112675, A140517, A269869. %K A266513 nonn %O A266513 1,3 %A A266513 _Andrew Howroyd_, Apr 06 2016