cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A266528 Least positive integer x such that n + x^5 = y^2 + z^3 for some positive integers y and z, or 0 if no such x exists.

Original entry on oeis.org

8, 1, 8, 3, 1, 2, 11, 5, 1, 1, 42, 1, 2, 11, 3, 21, 1, 3, 2, 5, 2, 3, 3, 1, 7, 1, 3, 1, 22, 4, 1, 2, 1, 2, 8, 1, 1, 3, 5, 13, 2, 2, 1, 1, 2, 27, 3, 3, 2, 1, 2, 1, 7, 6, 3, 5, 1, 2, 7, 2, 5, 15, 1, 17, 1, 13, 4, 1, 2, 2, 86
Offset: 0

Views

Author

Zhi-Wei Sun, Dec 31 2015

Keywords

Comments

By the general conjecture in A266277, for any integer m there are positive integers x, y and z such that m + x^5 = y^2 + z^3.

Examples

			a(0) = 8 since 0 + 8^5 = 104^2 + 28^3.
a(2) = 8 since 2 + 8^5 = 179^2 + 9^3.
a(6) = 11 since 6 + 11^5 = 143^2 + 52^3.
a(10) = 42 since 10 + 42^5 = 11415^2 + 73^3.
a(15) = 21 since 15 + 21^5 = 1355^2 + 131^3.
a(435) = 3019 since 435 + 3019^5 = 475594653^2 + 290845^3.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]
    Do[x=1;Label[bb];Do[If[SQ[n+x^5-y^3],Print[n," ",x];Goto[aa]],{y,1,(n+x^5-1)^(1/3)}];x=x+1;Goto[bb];Label[aa];Continue,{n,0,70}]