A266528 Least positive integer x such that n + x^5 = y^2 + z^3 for some positive integers y and z, or 0 if no such x exists.
8, 1, 8, 3, 1, 2, 11, 5, 1, 1, 42, 1, 2, 11, 3, 21, 1, 3, 2, 5, 2, 3, 3, 1, 7, 1, 3, 1, 22, 4, 1, 2, 1, 2, 8, 1, 1, 3, 5, 13, 2, 2, 1, 1, 2, 27, 3, 3, 2, 1, 2, 1, 7, 6, 3, 5, 1, 2, 7, 2, 5, 15, 1, 17, 1, 13, 4, 1, 2, 2, 86
Offset: 0
Keywords
Examples
a(0) = 8 since 0 + 8^5 = 104^2 + 28^3. a(2) = 8 since 2 + 8^5 = 179^2 + 9^3. a(6) = 11 since 6 + 11^5 = 143^2 + 52^3. a(10) = 42 since 10 + 42^5 = 11415^2 + 73^3. a(15) = 21 since 15 + 21^5 = 1355^2 + 131^3. a(435) = 3019 since 435 + 3019^5 = 475594653^2 + 290845^3.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 0..1100
Crossrefs
Programs
-
Mathematica
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]] Do[x=1;Label[bb];Do[If[SQ[n+x^5-y^3],Print[n," ",x];Goto[aa]],{y,1,(n+x^5-1)^(1/3)}];x=x+1;Goto[bb];Label[aa];Continue,{n,0,70}]
Comments