A266540 Partial sums of A266539.
0, 0, 1, 2, 3, 4, 7, 10, 11, 12, 15, 18, 23, 28, 35, 42, 43, 44, 47, 50, 55, 60, 67, 74, 83, 92, 103, 114, 127, 140, 155, 170, 171, 172, 175, 178, 183, 188, 195, 202, 211, 220, 231, 242, 255, 268, 283, 298, 315, 332, 351, 370, 391, 412, 435, 458, 483, 508, 535, 562, 591, 620, 651, 682, 683, 684, 687, 690, 695, 700
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Yuri Nikolayevsky and Ioannis Tsartsaflis, Cohomology of N-graded Lie algebras of maximal class over Z_2, arXiv:1512.87676 [math.RA], (2016); see pp. 2 and 6.
- Index entries for sequences related to the Josephus Problem
Programs
-
Maple
A006257[0]:=0: for n from 1 to 100 do A006257[n]:=(A006257[n-1]+1) mod n +1: end do: ListTools:-PartialSums([seq(A006257[i]$2,i=0..100)]); # Robert Israel, Jan 13 2016
-
Mathematica
Join[{0, 0}, Table[{k, k}, {n, 1, 6}, {k, 1, 2^n-1, 2}] // Flatten] // Accumulate (* Jean-François Alcover, Sep 19 2018 *)
Formula
a(2n-1) = A266535(n).
a(n) = (a(n-1) + a(n+1))/2, if n is an odd number greater than 1.
G.f.: (x^3+x^5)/(1-2*x+2*x^3-x^4) - x*(1-x)^(-2)*Sum_{k>=1} 2^k*x^(2^(1+k)). - Robert Israel, Jan 13 2016
Comments