cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A266540 Partial sums of A266539.

Original entry on oeis.org

0, 0, 1, 2, 3, 4, 7, 10, 11, 12, 15, 18, 23, 28, 35, 42, 43, 44, 47, 50, 55, 60, 67, 74, 83, 92, 103, 114, 127, 140, 155, 170, 171, 172, 175, 178, 183, 188, 195, 202, 211, 220, 231, 242, 255, 268, 283, 298, 315, 332, 351, 370, 391, 412, 435, 458, 483, 508, 535, 562, 591, 620, 651, 682, 683, 684, 687, 690, 695, 700
Offset: 1

Views

Author

Omar E. Pol, Jan 02 2016

Keywords

Comments

Also A266535 and twice the terms of A256249 interleaved, or in other words A266535 and A266538 interleaved.
It appears that this sequence has a fractal (or fractal-like) behavior.
First differs from both A266510 and A266530 at a(25), with which it shares infinitely many terms.
For an illustration of initial terms consider the diagram of A256249 in the fourth quadrant of the square grid together with a reflected copy in the second quadrant.
Also the third sequence of Betti numbers of the Lie algebra m_0(n) over Z_2. See the Nikolayevsky-Tsartsaflis paper, pages 2 and 6. Note that a(n) is denoted by b_3(m_0(n)).

Crossrefs

Cf. A006257 (Josephus problem), A256249, A266535, A266510, A266530, A266538, A266539.

Programs

Formula

a(2n-1) = A266535(n).
a(2n) = 2 * A256249(n-1) = A266538(n-1).
a(n) = (a(n-1) + a(n+1))/2, if n is an odd number greater than 1.
G.f.: (x^3+x^5)/(1-2*x+2*x^3-x^4) - x*(1-x)^(-2)*Sum_{k>=1} 2^k*x^(2^(1+k)). - Robert Israel, Jan 13 2016