A266542 Number of n X 3 binary arrays with rows and columns lexicographically nondecreasing and row and column sums nonincreasing.
2, 3, 5, 6, 8, 11, 13, 16, 20, 23, 27, 32, 36, 41, 47, 52, 58, 65, 71, 78, 86, 93, 101, 110, 118, 127, 137, 146, 156, 167, 177, 188, 200, 211, 223, 236, 248, 261, 275, 288, 302, 317, 331, 346, 362, 377, 393, 410, 426, 443, 461, 478, 496, 515, 533, 552, 572, 591, 611, 632
Offset: 1
Keywords
Examples
Some solutions for n=6: ..0..1..1....0..1..1....0..0..1....0..1..1....0..1..1....0..1..1....0..0..1 ..0..1..1....1..0..1....0..1..0....1..0..0....0..1..1....0..1..1....0..0..1 ..1..0..1....1..1..0....0..1..0....1..0..0....0..1..1....1..0..0....0..1..0 ..1..0..1....1..1..0....1..0..0....1..0..0....1..0..0....1..0..0....0..1..0 ..1..1..0....1..1..0....1..0..0....1..0..0....1..0..0....1..0..0....1..0..0 ..1..1..0....1..1..0....1..0..0....1..0..0....1..0..0....1..0..0....1..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 3 of A266547.
Formula
Empirical: a(n) = 2*a(n-1) - a(n-2) + a(n-3) - 2*a(n-4) + a(n-5).
Empirical g.f.: x*(2 - x + x^2 - 3*x^3 + 2*x^4) / ((1 - x)^3*(1 + x + x^2)). - Colin Barker, Jan 10 2019