A266543 Number of n X 4 binary arrays with rows and columns lexicographically nondecreasing and row and column sums nonincreasing.
2, 4, 6, 12, 16, 27, 36, 57, 76, 114, 149, 213, 276, 379, 485, 645, 811, 1051, 1304, 1652, 2021, 2511, 3034, 3709, 4431, 5338, 6311, 7510, 8795, 10352, 12020, 14010, 16142, 18653, 21340, 24469, 27813, 31669, 35786, 40492, 45507, 51196, 57252, 64073, 71324
Offset: 1
Keywords
Examples
Some solutions for n=6: ..0..0..1..1....0..0..1..1....0..1..1..1....0..1..1..1....0..0..1..1 ..0..1..0..1....0..1..0..0....1..0..1..1....1..0..0..1....0..1..0..1 ..0..1..1..0....1..0..0..0....1..1..0..0....1..0..1..0....0..1..1..0 ..1..0..0..0....1..0..0..0....1..1..0..0....1..1..0..0....1..0..0..1 ..1..0..0..0....1..0..0..0....1..1..0..0....1..1..0..0....1..0..1..0 ..1..0..0..0....1..0..0..0....1..1..0..0....1..1..0..0....1..1..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..179
Crossrefs
Column 4 of A266547.
Formula
Empirical: a(n) = a(n-1) + 2*a(n-2) - a(n-3) - a(n-4) - a(n-5) - a(n-6) + 2*a(n-8) + 2*a(n-9) - a(n-11) - a(n-12) - a(n-13) - a(n-14) + 2*a(n-15) + a(n-16) - a(n-17).
Empirical g.f.: x*(2 + 2*x - 2*x^2 - 2*x^4 - x^5 + x^6 + 5*x^7 + 4*x^8 + 3*x^9 - x^10 - 2*x^11 - 2*x^12 - x^13 + 4*x^14 + 2*x^15 - 2*x^16) / ((1 - x)^6*(1 + x)^3*(1 + x^2)*(1 + x + x^2)*(1 + x + x^2 + x^3 + x^4)). - Colin Barker, Jan 10 2019