cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A266542 Number of n X 3 binary arrays with rows and columns lexicographically nondecreasing and row and column sums nonincreasing.

Original entry on oeis.org

2, 3, 5, 6, 8, 11, 13, 16, 20, 23, 27, 32, 36, 41, 47, 52, 58, 65, 71, 78, 86, 93, 101, 110, 118, 127, 137, 146, 156, 167, 177, 188, 200, 211, 223, 236, 248, 261, 275, 288, 302, 317, 331, 346, 362, 377, 393, 410, 426, 443, 461, 478, 496, 515, 533, 552, 572, 591, 611, 632
Offset: 1

Views

Author

R. H. Hardin, Dec 31 2015

Keywords

Examples

			Some solutions for n=6:
..0..1..1....0..1..1....0..0..1....0..1..1....0..1..1....0..1..1....0..0..1
..0..1..1....1..0..1....0..1..0....1..0..0....0..1..1....0..1..1....0..0..1
..1..0..1....1..1..0....0..1..0....1..0..0....0..1..1....1..0..0....0..1..0
..1..0..1....1..1..0....1..0..0....1..0..0....1..0..0....1..0..0....0..1..0
..1..1..0....1..1..0....1..0..0....1..0..0....1..0..0....1..0..0....1..0..0
..1..1..0....1..1..0....1..0..0....1..0..0....1..0..0....1..0..0....1..0..0
		

Crossrefs

Column 3 of A266547.

Formula

Empirical: a(n) = 2*a(n-1) - a(n-2) + a(n-3) - 2*a(n-4) + a(n-5).
Empirical g.f.: x*(2 - x + x^2 - 3*x^3 + 2*x^4) / ((1 - x)^3*(1 + x + x^2)). - Colin Barker, Jan 10 2019

A266543 Number of n X 4 binary arrays with rows and columns lexicographically nondecreasing and row and column sums nonincreasing.

Original entry on oeis.org

2, 4, 6, 12, 16, 27, 36, 57, 76, 114, 149, 213, 276, 379, 485, 645, 811, 1051, 1304, 1652, 2021, 2511, 3034, 3709, 4431, 5338, 6311, 7510, 8795, 10352, 12020, 14010, 16142, 18653, 21340, 24469, 27813, 31669, 35786, 40492, 45507, 51196, 57252, 64073, 71324
Offset: 1

Views

Author

R. H. Hardin, Dec 31 2015

Keywords

Examples

			Some solutions for n=6:
..0..0..1..1....0..0..1..1....0..1..1..1....0..1..1..1....0..0..1..1
..0..1..0..1....0..1..0..0....1..0..1..1....1..0..0..1....0..1..0..1
..0..1..1..0....1..0..0..0....1..1..0..0....1..0..1..0....0..1..1..0
..1..0..0..0....1..0..0..0....1..1..0..0....1..1..0..0....1..0..0..1
..1..0..0..0....1..0..0..0....1..1..0..0....1..1..0..0....1..0..1..0
..1..0..0..0....1..0..0..0....1..1..0..0....1..1..0..0....1..1..0..0
		

Crossrefs

Column 4 of A266547.

Formula

Empirical: a(n) = a(n-1) + 2*a(n-2) - a(n-3) - a(n-4) - a(n-5) - a(n-6) + 2*a(n-8) + 2*a(n-9) - a(n-11) - a(n-12) - a(n-13) - a(n-14) + 2*a(n-15) + a(n-16) - a(n-17).
Empirical g.f.: x*(2 + 2*x - 2*x^2 - 2*x^4 - x^5 + x^6 + 5*x^7 + 4*x^8 + 3*x^9 - x^10 - 2*x^11 - 2*x^12 - x^13 + 4*x^14 + 2*x^15 - 2*x^16) / ((1 - x)^6*(1 + x)^3*(1 + x^2)*(1 + x + x^2)*(1 + x + x^2 + x^3 + x^4)). - Colin Barker, Jan 10 2019

A266544 Number of nX5 binary arrays with rows and columns lexicographically nondecreasing and row and column sums nonincreasing.

Original entry on oeis.org

2, 4, 8, 16, 36, 58, 110, 196, 363, 695, 1157, 2023, 3446, 5755, 9485, 14901, 23156, 35568, 53350, 79575, 114919, 165223, 233650, 327246, 453231, 618603, 836533, 1122433, 1490044, 1967385, 2565448, 3329153, 4284884, 5482977, 6970961, 8800503
Offset: 1

Views

Author

R. H. Hardin, Dec 31 2015

Keywords

Comments

Column 5 of A266547.

Examples

			Some solutions for n=6
..0..1..1..1..1....0..0..1..1..1....0..1..1..1..1....0..1..1..1..1
..0..1..1..1..1....0..1..0..1..1....0..1..1..1..1....0..1..1..1..1
..1..0..0..1..1....1..0..1..0..0....1..0..0..1..1....1..0..0..0..1
..1..0..1..0..0....1..0..1..0..0....1..0..0..1..1....1..0..0..1..0
..1..1..0..0..0....1..1..0..0..0....1..1..1..0..0....1..0..1..0..0
..1..1..0..0..0....1..1..0..0..0....1..1..1..0..0....1..1..0..0..0
		

Crossrefs

Cf. A266547.

A266541 Number of n X n binary arrays with rows and columns lexicographically nondecreasing and row and column sums nonincreasing.

Original entry on oeis.org

2, 3, 5, 12, 36, 176, 1688, 48167, 4283651
Offset: 1

Views

Author

R. H. Hardin, Dec 31 2015

Keywords

Comments

Diagonal of A266547.

Examples

			Some solutions for n=6
..0..0..0..0..1..1....0..0..1..1..1..1....0..1..1..1..1..1....0..1..1..1..1..1
..0..0..1..1..0..0....0..1..0..0..1..1....1..0..0..1..1..1....1..0..0..1..1..1
..0..1..0..0..0..0....0..1..0..0..1..1....1..0..1..0..0..1....1..0..1..0..1..1
..1..0..0..0..0..0....1..0..1..1..0..0....1..1..0..0..1..0....1..1..0..1..0..0
..1..0..0..0..0..0....1..0..1..1..0..0....1..1..0..1..0..0....1..1..1..0..0..0
..1..0..0..0..0..0....1..1..0..0..0..0....1..1..1..0..0..0....1..1..1..0..0..0
		

Crossrefs

Cf. A266547.

A266545 Number of nX6 binary arrays with rows and columns lexicographically nondecreasing and row and column sums nonincreasing.

Original entry on oeis.org

2, 5, 11, 27, 58, 176, 366, 1062, 2571, 7345, 17540, 47970, 109375, 272134, 595031, 1359839, 2827311, 6072251, 12027150, 24388681, 46416427, 89575530, 164016985, 303788687, 537614351, 959313275, 1647205384
Offset: 1

Views

Author

R. H. Hardin, Dec 31 2015

Keywords

Comments

Column 6 of A266547.

Examples

			Some solutions for n=6
..0..0..0..1..1..1....0..0..0..1..1..1....0..0..0..1..1..1....0..0..0..1..1..1
..0..1..1..0..0..0....0..1..1..0..0..1....0..0..1..0..1..1....0..0..1..0..1..1
..1..0..0..0..0..0....1..0..0..1..1..0....0..1..1..0..0..0....0..1..1..0..0..1
..1..0..0..0..0..0....1..1..1..0..0..0....1..0..0..1..0..0....1..0..1..0..1..0
..1..0..0..0..0..0....1..1..1..0..0..0....1..1..0..0..0..0....1..1..0..1..0..0
..1..0..0..0..0..0....1..1..1..0..0..0....1..1..0..0..0..0....1..1..0..1..0..0
		

Crossrefs

Cf. A266547.

A266546 Number of nX7 binary arrays with rows and columns lexicographically nondecreasing and row and column sums nonincreasing.

Original entry on oeis.org

2, 5, 13, 36, 110, 366, 1688, 5312, 24921, 101495, 417118, 1673507, 6081357, 22843019, 72935735, 238112928, 734665224, 2185350505
Offset: 1

Views

Author

R. H. Hardin, Dec 31 2015

Keywords

Comments

Column 7 of A266547.

Examples

			Some solutions for n=6
..0..0..0..0..1..1..1....0..0..0..1..1..1..1....0..0..0..0..1..1..1
..0..1..1..1..0..0..0....0..0..1..0..0..1..1....0..0..0..1..0..1..1
..1..0..0..1..0..0..0....0..1..0..1..1..0..0....0..0..1..0..1..0..0
..1..0..1..0..0..0..0....1..0..1..0..0..0..0....0..0..1..1..0..0..0
..1..1..0..0..0..0..0....1..1..0..0..0..0..0....1..1..0..0..0..0..0
..1..1..0..0..0..0..0....1..1..0..0..0..0..0....1..1..0..0..0..0..0
		

Crossrefs

Cf. A266547.
Showing 1-6 of 6 results.