This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A266553 #20 Mar 27 2024 20:11:49 %S A266553 1,0,0,5,9,1,7,1,9,6,9,9,8,6,7,3,4,6,8,4,4,4,0,1,3,9,8,3,5,5,4,2,5,5, %T A266553 6,5,6,3,9,0,6,1,5,6,5,5,0,0,6,9,3,2,1,1,4,0,0,9,8,0,5,1,5,7,4,0,8,1, %U A266553 4,6,8,7,0,3,4,2,9,9,4,6,3,2,7,7,1,9,6,7,0,8,1,7,0,8,8,4,1,4,6,8,7,3,5,4,1,1,1,0,0,2,2,4,0,3 %N A266553 Decimal expansion of the generalized Glaisher-Kinkelin constant A(6). %C A266553 Also known as the 6th Bendersky constant. %H A266553 G. C. Greubel, <a href="/A266553/b266553.txt">Table of n, a(n) for n = 1..2003</a> %F A266553 A(k) = exp(H(k)*B(k+1)/(k+1) - zeta'(-k)), where B(k) is the k-th Bernoulli number, H(k) the k-th harmonic number, and zeta'(x) is the derivative of the Riemann zeta function. %F A266553 A(6) = exp(- zeta'(-6)) = exp((B(6)/4)*(zeta(7)/zeta(6))). %F A266553 A(6) = exp(6! * Zeta(7) / (2^7 * Pi^6)). - _Vaclav Kotesovec_, Jan 01 2016 %e A266553 1.00591719699867346844401398355425565639061565500693211400980... %t A266553 Exp[N[(BernoulliB[6]/4)*(Zeta[7]/Zeta[6]), 200]] %Y A266553 Cf. A019727 (A(0)), A074962 (A(1)), A243262 (A(2)), A243263 (A(3)), A243264 (A(4)), A243265 (A(5)), A266554 (A(7)), A266555 (A(8)), A266556 (A(9)), A266557 (A(10)), A266558 (A(11)), A266559 (A(12)), A260662 (A(13)), A266560 (A(14)), A266562 (A(15)), A266563 (A(16)), A266564 (A(17)), A266565 (A(18)), A266566 (A(19)), A266567 (A(20)). %Y A266553 Cf. A013664, A013665, A259071, A027641, A027642 %K A266553 nonn,cons %O A266553 1,4 %A A266553 _G. C. Greubel_, Dec 31 2015