This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A266555 #16 Mar 27 2024 20:11:45 %S A266555 9,9,1,7,1,8,3,2,1,6,3,2,8,2,2,1,9,6,9,9,9,5,4,7,4,8,2,7,6,5,7,9,3,3, %T A266555 3,9,8,6,7,8,5,9,7,6,0,5,7,3,0,5,0,7,9,2,4,7,0,7,6,5,9,9,3,4,0,9,5,0, %U A266555 2,3,7,9,3,4,2,1,7,6,1,9,0,9,3,0,9,1,2,3,8,8,8,6,1 %N A266555 Decimal expansion of the generalized Glaisher-Kinkelin constant A(8). %C A266555 Also known as the 8th Bendersky constant. %H A266555 G. C. Greubel, <a href="/A266555/b266555.txt">Table of n, a(n) for n = 0..2001</a> %F A266555 A(k) = exp(H(k)*B(k+1)/(k+1) - zeta'(-k)), where B(k) is the k-th Bernoulli number, H(k) the k-th harmonic number, and zeta'(x) is the derivative of the Riemann zeta function. %F A266555 A(8) = -zeta'(-8) = (B(8)/4)*(zeta(9)/zeta(8)). %F A266555 A(8) = exp(-8! * Zeta(9) / (2^9 * Pi^8)). - _Vaclav Kotesovec_, Jan 01 2016 %e A266555 0.99171832163282219699954748276579333986785976057305079247... %t A266555 Exp[N[(BernoulliB[8]/4)*(Zeta[9]/Zeta[8]), 200]] %Y A266555 Cf. A019727 (A(0)), A074962 (A(1)), A243262 (A(2)), A243263 (A(3)), A243264 (A(4)), A243265 (A(5)), A266553 (A(6)), A266554 (A(7)), A266556 (A(9)), A266557 (A(10)), A266558 (A(11)), A266559 (A(12)), A260662 (A(13)), A266560 (A(14)), A266562 (A(15)), A266563 (A(16)), A266564 (A(17)), A266565 (A(18)), A266566 (A(19)), A266567 (A(20)). %Y A266555 Cf. A013666, A013667, A259073, A027641, A027642. %K A266555 nonn,cons %O A266555 0,1 %A A266555 _G. C. Greubel_, Dec 31 2015