cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A266563 Decimal expansion of the generalized Glaisher-Kinkelin constant A(16).

This page as a plain text file.
%I A266563 #17 Mar 27 2024 20:11:22
%S A266563 1,6,9,8,1,8,3,9,7,8,4,2,7,7,5,6,0,7,7,4,7,3,0,9,5,5,1,6,8,3,1,2,7,1,
%T A266563 1,8,7,9,5,1,5,2,9,1,4,2,8,6,3,7,7,3,5,8,6,0,2,7,1,7,5,9,5,5,0,0,0,7,
%U A266563 5,4,2,1,7,6,0,8,8,8,8,0,1,4,7,1,9,3,5,6,7,0,8,2
%N A266563 Decimal expansion of the generalized Glaisher-Kinkelin constant A(16).
%C A266563 Also known as the 16th Bendersky constant.
%H A266563 G. C. Greubel, <a href="/A266563/b266563.txt">Table of n, a(n) for n = 0..2000</a>
%F A266563 A(k) = exp(H(k)*B(k+1)/(k+1) - zeta'(-k)), where B(k) is the k-th Bernoulli number, H(k) the k-th harmonic number, and zeta'(x) is the derivative of the Riemann zeta function.
%F A266563 A(16) = exp((B(16)/4)*(zeta(17)/zeta(16))) = exp(-zeta'(-16)).
%F A266563 A(16) = exp(-16! * Zeta(17) / (2^17 * Pi^16)). - _Vaclav Kotesovec_, Jan 01 2016
%e A266563 0.16981839784277560774730955168312711879515291428637735860...
%t A266563 Exp[N[(BernoulliB[16]/4)*(Zeta[17]/Zeta[16]), 200]]
%Y A266563 Cf. A019727 (A(0)), A074962 (A(1)), A243262 (A(2)), A243263 (A(3)), A243264 (A(4)), A243265 (A(5)), A266553 (A(6)), A266554 (A(7)), A266555 (A(8)), A266556 (A(9)), A266557 (A(10)), A266558 (A(11)), A266559 (A(12)), A260662 (A(13)), A266560 (A(14)), A266562 (A(15)), A266564 (A(17)), A266565 (A(18)), A266566 (A(19)), A266567 (A(20)).
%Y A266563 Cf. A013674, A013675, A266271, A027641, A027642.
%K A266563 nonn,cons
%O A266563 0,2
%A A266563 _G. C. Greubel_, Dec 31 2015