A266582 Numbers k such that (265*10^k - 7)/3 is prime.
1, 2, 4, 9, 13, 14, 16, 46, 99, 112, 116, 127, 146, 208, 512, 848, 1132, 2167, 2482, 2666, 3625, 14410, 16567, 21529, 26272, 69554, 69602
Offset: 1
Examples
4 is in this sequence because (265*10^4 - 7)/3 = 883331 is prime. Initial terms and associated primes: a(1) = 1, 881; a(2) = 2, 8831; a(3) = 4, 883331l a(4) = 9, 88333333331; a(5) = 13, 883333333333331, etc.
Links
- Makoto Kamada, Factorization of near-repdigit-related numbers.
- Makoto Kamada, Search for 883w1.
Programs
-
Mathematica
Select[Range[0, 100000], PrimeQ[(265*10^# - 7)/3] &]
-
PARI
is(n)=ispseudoprime((265*10^n-7)/3) \\ Charles R Greathouse IV, Jun 13 2017
Comments