A266587 Smallest index of a Lucas number (A000032) that is divisible by prime(n), if it exists, or 0 if it does not exist (for n > 1).
0, 2, 0, 4, 5, 0, 0, 9, 12, 7, 15, 0, 10, 22, 8, 0, 29, 0, 34, 35, 0, 39, 42, 0, 0, 25, 52, 18, 0, 0, 64, 65, 0, 23, 0, 25, 0, 82, 84, 0, 89, 45, 95, 0, 0, 11, 21, 112, 114, 57, 0, 119, 60, 125, 0, 44, 0, 135, 0, 14, 142, 0, 22, 155, 0, 0, 55, 0, 58, 87, 0, 179, 184, 0, 189, 192, 0, 0, 50, 102, 209, 0, 215, 0, 219, 222, 112, 0, 23, 232, 234, 239, 244, 245
Offset: 1
Keywords
Examples
For prime(10) = 29, we get a(10) = 7, because Lucas(7)= 29 is the first Lucas number divisible by 29. Also note 7 = (29-1)/4. For prime(11) = 31, we get a(11) = 15, because Lucas(15) = 1364 is the first Lucas number divisible by 31. Also note 15 = (31-1)/2.
Programs
-
Mathematica
result={}; Do[iresult=0; Do[If[Divisible[LucasL[i], Prime[k]], iresult=i; Break[]], {i, 1, 2000}]; AppendTo[result, iresult], {k, 2, 200}]; result p = 23; a = 12; m = 4; Table[Divisible[LucasL[a + a*(p - 1)*Sum[p^(j - 1), {j, 1, m - 1}] + 2a*i*p^(m - 1)], p^m], {i, 1, 100}]
Comments