cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A266612 Binary representation of the middle column of the "Rule 41" elementary cellular automaton starting with a single ON (black) cell.

This page as a plain text file.
%I A266612 #35 Feb 16 2025 08:33:28
%S A266612 1,10,101,1010,10100,101001,1010010,10100101,101001010,1010010101,
%T A266612 10100101010,101001010101,1010010101010,10100101010101,
%U A266612 101001010101010,1010010101010101,10100101010101010,101001010101010101,1010010101010101010,10100101010101010101
%N A266612 Binary representation of the middle column of the "Rule 41" elementary cellular automaton starting with a single ON (black) cell.
%H A266612 Robert Price, <a href="/A266612/b266612.txt">Table of n, a(n) for n = 0..1000</a>
%H A266612 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>
%H A266612 Stephen Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a>, Wolfram Media, 2002; p. 55.
%H A266612 <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>
%H A266612 <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a>
%F A266612 Conjectures from _Colin Barker_, Jan 02 2016 and Apr 17 2019: (Start)
%F A266612 a(n) = (-9*(-1)^n+99991*2^(n-2)*5^(n-3)-11)/198 for n>2.
%F A266612 a(n) = 10*a(n-1)+a(n-2)-10*a(n-3) for n>2.
%F A266612 G.f.: (1-x^4+x^5) / ((1-x)*(1+x)*(1-10*x)).
%F A266612 (End)
%t A266612 rule=41; rows=20; ca=CellularAutomaton[rule,{{1},0},rows-1,{All,All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]],{rows-k+1,rows+k-1}],{k,1,rows}]; (* Truncated list of each row *) mc=Table[catri[[k]][[k]],{k,1,rows}]; (* Keep only middle cell from each row *) Table[FromDigits[Take[mc,k]],{k,1,rows}]  (* Binary Representation of Middle Column *)
%Y A266612 Cf. A266608, A266611, A266613.
%K A266612 nonn,easy
%O A266612 0,2
%A A266612 _Robert Price_, Jan 01 2016
%E A266612 Removed an unjustified claim that _Colin Barker_'s conjectures are correct. Removed a program based on a conjecture. - _N. J. A. Sloane_, Jun 13 2022