cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A266613 Decimal representation of the middle column of the "Rule 41" elementary cellular automaton starting with a single ON (black) cell.

This page as a plain text file.
%I A266613 #63 Feb 16 2025 08:33:28
%S A266613 1,2,5,10,20,41,82,165,330,661,1322,2645,5290,10581,21162,42325,84650,
%T A266613 169301,338602,677205,1354410,2708821,5417642,10835285,21670570,
%U A266613 43341141,86682282,173364565,346729130,693458261,1386916522,2773833045,5547666090,11095332181
%N A266613 Decimal representation of the middle column of the "Rule 41" elementary cellular automaton starting with a single ON (black) cell.
%H A266613 Robert Price, <a href="/A266613/b266613.txt">Table of n, a(n) for n = 0..1000</a>
%H A266613 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>
%H A266613 Stephen Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a>, Wolfram Media, 2002; p. 55.
%H A266613 <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>
%H A266613 <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a>
%F A266613 A266612(n) = A007088(a(n)).
%F A266613 Conjectures from _Colin Barker_, Jan 02 2016 and Apr 16 2019: (Start)
%F A266613 a(n) = (31*2^n-4*((-1)^n+3))/24 for n>2.
%F A266613 a(n) = 2*a(n-1)+a(n-2)-2*a(n-3) for n>5. - [corrected by _Karl V. Keller, Jr._, Oct 07 2021]
%F A266613 G.f.: (1-x^4+x^5) / ((1-x)*(1+x)*(1-2*x)). (End)
%F A266613 Conjecture: a(n) = A000975(n) + 20*2^(n-5), for n>2. - _Andres Cicuttin_, Mar 31 2016
%p A266613 # Rule 41: value in generation r and column c, where c=0 is the central one
%p A266613 r41 := proc(r::integer,c::integer)
%p A266613     option remember;
%p A266613     local up ;
%p A266613     if r = 0 then
%p A266613         if c = 0 then
%p A266613             1;
%p A266613         else
%p A266613             0;
%p A266613         end if;
%p A266613     else
%p A266613         # previous 3 bits
%p A266613         [procname(r-1,c+1),procname(r-1,c),procname(r-1,c-1)] ;
%p A266613         up := op(3,%)+2*op(2,%)+4*op(1,%) ;
%p A266613         # rule 41 = 00101001_2: {5,3,0}->1, all others ->0
%p A266613         if up in {5,3,0} then
%p A266613             1;
%p A266613         else
%p A266613             0 ;
%p A266613         end if;
%p A266613     end if;
%p A266613 end proc:
%p A266613 A266613 := proc(n)
%p A266613     b := [seq(r41(r,0),r=0..n)] ;
%p A266613     add(op(-i,b)*2^(i-1),i=1..nops(b)) ;
%p A266613 end proc:
%p A266613 smax := 20 ;
%p A266613 L := [seq(A266613(n),n=0..smax)] ; # _R. J. Mathar_, Apr 12 2019
%t A266613 rule=41; rows=20; ca=CellularAutomaton[rule,{{1},0},rows-1,{All,All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]],{rows-k+1,rows+k-1}],{k,1,rows}]; (* Truncated list of each row *) mc=Table[catri[[k]][[k]],{k,1,rows}]; (* Keep only middle cell from each row *) Table[FromDigits[Take[mc,k],2],{k,1,rows}] (* Binary Representation of Middle Column *)
%Y A266613 Cf. A000975, A266608, A266611, A266612, A081253.
%K A266613 nonn,easy
%O A266613 0,2
%A A266613 _Robert Price_, Jan 01 2016
%E A266613 Removed an unjustified claim that _Colin Barker_'s conjectures are correct. Removed a program based on a conjecture. - _N. J. A. Sloane_, Jun 13 2022