cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A266640 Reversed reduced frequency counts for A004001: a(n) = A265754(A054429(n)).

This page as a plain text file.
%I A266640 #13 Jan 29 2016 17:13:51
%S A266640 1,2,1,3,2,1,1,4,3,2,1,2,1,1,1,5,4,3,2,1,3,2,1,2,1,1,2,1,1,1,1,6,5,4,
%T A266640 3,2,1,4,3,2,1,3,2,1,2,1,1,3,2,1,2,1,1,2,1,1,1,2,1,1,1,1,1,7,6,5,4,3,
%U A266640 2,1,5,4,3,2,1,4,3,2,1,3,2,1,2,1,1,4,3,2,1,3,2,1,2,1,1,3,2,1,2,1,1,2,1,1,1
%N A266640 Reversed reduced frequency counts for A004001: a(n) = A265754(A054429(n)).
%C A266640 Deleting all 1's and decrementing the remaining terms by one gives the sequence back.
%H A266640 Antti Karttunen, <a href="/A266640/b266640.txt">Table of n, a(n) for n = 1..8191</a>
%H A266640 T. Kubo and R. Vakil, <a href="http://dx.doi.org/10.1016/0012-365X(94)00303-Z">On Conway's recursive sequence</a>, Discr. Math. 152 (1996), 225-252.
%F A266640 a(n) = A265754(A054429(n)).
%F A266640 Other identities. For all n >= 0:
%F A266640 a(2^n) = n+1.
%e A266640 Illustration how the sequence can be constructed by concatenating the reversed reduced frequency counts R_n of each successive level n of A004001-tree:
%e A266640                               1
%e A266640                              / \
%e A266640                             2   1
%e A266640                            /|\   \
%e A266640               ____________3 2 1   1
%e A266640              /    /    /  | |\ \   \
%e A266640     ________4  __3    2   1 2 1 1   1
%e A266640    / / / / /  / /|   /|   | |\ \ \   \
%e A266640   5 4 3 2 1  3 2 1  2 1   1 2 1 1 1   1
%e A266640 etc.
%o A266640 (Scheme) (define (A266640 n) (A265754 (A054429 n)))
%Y A266640 Cf. A004001, A054429.
%Y A266640 Cf. A000079 (positions of records, where n appears for the first time).
%Y A266640 Cf. A265754 (obtained from the mirror image of the same tree).
%K A266640 nonn,tabf
%O A266640 1,2
%A A266640 _Antti Karttunen_, Jan 22 2016