cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A266650 Expansion of Product_{k>=1} (1 + x^k - x^(3*k)) / (1 - x^k).

Original entry on oeis.org

1, 2, 4, 7, 13, 21, 34, 53, 82, 123, 181, 263, 379, 537, 754, 1047, 1444, 1972, 2675, 3601, 4820, 6408, 8473, 11141, 14580, 18985, 24611, 31765, 40839, 52294, 66719, 84819, 107474, 135731, 170892, 214518, 268524, 335190, 417308, 518212, 641948, 793324, 978157
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 02 2016

Keywords

Comments

Convolution of A266686 and A000041.

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1+x^k-x^(3*k))/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ sqrt(6*c + Pi^2) * exp(sqrt((4*c + 2*Pi^2/3)*n)) / (4*sqrt(3)*Pi*n), where c = Integral_{0..infinity} log(1 + exp(-x) - exp(-3*x)) dx = 0.59698046904738615106237970379036510874974380079287087827737... . - Vaclav Kotesovec, Jan 05 2016