A266651 Nonnegative integers x such that x^3 + 6^3 is a sum of two squares.
14, 21, 62, 190, 206, 210, 237, 286, 334, 350, 382, 398, 426, 430, 446, 453, 574, 622, 670, 734, 766, 777, 782, 878, 958, 974, 1102, 1294, 1317, 1342, 1438, 1486, 1678, 1694, 1722, 1749, 1774, 1790, 1938, 1965, 1966, 2014, 2030, 2110, 2126, 2154, 2222, 2254, 2270, 2289, 2302, 2397, 2414, 2446, 2558, 2638, 2686, 2721, 2734, 2750
Offset: 1
Keywords
Examples
a(1) = 14 since 14^3 + 6^3 = 16^2 + 52^2. a(7) = 237 since 237^3 + 6^3 = 162^2 + 3645^2.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
f[n_]:=f[n]=FactorInteger[n] Le[n_]:=Le[n]=Length[f[n]] n=0;Do[Do[If[Mod[Part[Part[f[x^3+6^3],i],1],4]==3&&Mod[Part[Part[f[x^3+6^3],i],2],2]==1,Goto[aa]],{i,1,Le[216+x^3]}];n=n+1;Print[n," ",x];Label[aa];Continue,{x,0,2750}]
Comments