This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A266685 #13 Mar 22 2017 10:34:46 %S A266685 1,2,1,1,2,1,4,1,1,2,3,2,1,6,1,1,2,1,4,1,2,1,8,1,1,2,1,2,5,2,1,2,1,10, %T A266685 1,1,2,3,4,1,6,1,4,3,2,1,12,1,1,2,1,2,1,2,7,2,1,2,1,2,1,14,1,1,2,1,4, %U A266685 1,2,1,8,1,2,1,4,1,2,1,16,1,1,2,3,2,1,6,1,2,9,2,1,6,1,2,3,2,1,18 %N A266685 T(n,k) is the number of loops appearing in pattern of circular arc connecting two vertices of regular polygons. (See Comments.) %C A266685 The patterns in A262343 and A264906 can be considered as case of skip 0 and 1 vertex of circle construction on regular polygons. k is the cyclic number of loops of the case skip n-vertices. See illustration for more details. %C A266685 T(n,k) is conjectured to be even rows of A109004 (excluding the first column). %H A266685 Kival Ngaokrajang, <a href="/A266685/a266685.pdf">Illustration of initial terms</a> %F A266685 T(n,k) = gcd(2*n+3+k, k+1), n >= 0, k = 0..2*n+1. %e A266685 Irregular triangle begins: %e A266685 n\k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ... %e A266685 0 1 2 %e A266685 1 1 2 1 4 %e A266685 2 1 2 3 2 1 6 %e A266685 3 1 2 1 4 1 2 1 8 %e A266685 4 1 2 1 2 5 2 1 2 1 10 %e A266685 5 1 2 3 4 1 6 1 4 3 2 1 12 %e A266685 6 1 2 1 2 1 2 7 2 1 2 1 2 1 14 %e A266685 7 1 2 1 4 1 2 1 8 1 2 1 4 1 2 1 16 %e A266685 ... %t A266685 Table[GCD[2 n + 3 + k, k + 1], {n, 0, 8}, {k, 0, 2 n + 1}] // Flatten (* _Michael De Vlieger_, Jan 03 2016 *) %o A266685 (PARI) for (n=0, 20,for (k=0, 2*n+2, t=gcd(2*n+3+k, k+1); print1(t, ", "))) %Y A266685 Cf. A109004, A262343, A264906. %K A266685 nonn,tabf %O A266685 0,2 %A A266685 _Kival Ngaokrajang_, Jan 02 2016