cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A266685 T(n,k) is the number of loops appearing in pattern of circular arc connecting two vertices of regular polygons. (See Comments.)

This page as a plain text file.
%I A266685 #13 Mar 22 2017 10:34:46
%S A266685 1,2,1,1,2,1,4,1,1,2,3,2,1,6,1,1,2,1,4,1,2,1,8,1,1,2,1,2,5,2,1,2,1,10,
%T A266685 1,1,2,3,4,1,6,1,4,3,2,1,12,1,1,2,1,2,1,2,7,2,1,2,1,2,1,14,1,1,2,1,4,
%U A266685 1,2,1,8,1,2,1,4,1,2,1,16,1,1,2,3,2,1,6,1,2,9,2,1,6,1,2,3,2,1,18
%N A266685 T(n,k) is the number of loops appearing in pattern of circular arc connecting two vertices of regular polygons. (See Comments.)
%C A266685 The patterns in A262343 and A264906 can be considered as case of skip 0 and 1 vertex of circle construction on regular polygons. k is the cyclic number of loops of the case skip n-vertices. See illustration for more details.
%C A266685 T(n,k) is conjectured to be even rows of A109004 (excluding the first column).
%H A266685 Kival Ngaokrajang, <a href="/A266685/a266685.pdf">Illustration of initial terms</a>
%F A266685 T(n,k) = gcd(2*n+3+k, k+1), n >= 0, k = 0..2*n+1.
%e A266685 Irregular triangle begins:
%e A266685 n\k   0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 ...
%e A266685 0     1  2
%e A266685 1     1  2  1  4
%e A266685 2     1  2  3  2  1  6
%e A266685 3     1  2  1  4  1  2  1  8
%e A266685 4     1  2  1  2  5  2  1  2  1 10
%e A266685 5     1  2  3  4  1  6  1  4  3  2  1 12
%e A266685 6     1  2  1  2  1  2  7  2  1  2  1  2  1 14
%e A266685 7     1  2  1  4  1  2  1  8  1  2  1  4  1  2  1 16
%e A266685 ...
%t A266685 Table[GCD[2 n + 3 + k, k + 1], {n, 0, 8}, {k, 0, 2 n + 1}] // Flatten (* _Michael De Vlieger_, Jan 03 2016 *)
%o A266685 (PARI) for (n=0, 20,for (k=0, 2*n+2, t=gcd(2*n+3+k, k+1); print1(t, ", ")))
%Y A266685 Cf. A109004, A262343, A264906.
%K A266685 nonn,tabf
%O A266685 0,2
%A A266685 _Kival Ngaokrajang_, Jan 02 2016